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Why?

L=—(00) -V(#) ——  L=5(6(00)%06,...

= These corrections must be there. How small?

— Experimentally distinguishable

— DBI inflation: explicit example where hd are important

= What is our guiding principle? What is “natural” in inflation?

= Not so fancy after all:

2 14w
[(0p)7] 2w describes a barotropic fluid with w=p/p




Outline

DBI as an example
GWs?

General approach: EFT for inflation
Robust equilateral NG (vs local)

Model dependent GW

Beyond slow-roll in multifield



DBI inﬂation Alishahiha, Silverstein and Tong, 04

Example of an action £ = P(¢, X = (0¢)?) where higher derivatives are important

/ y \ A probe D3 brane moves towards IR of AdS.

—1 AdS . . .
/ Geometrically there is a speed limit
This limit is encoded in hd Log=——/—¢ (f(@)—l\/l + f(0)g" 0,60, ¢ + V(Q)>
gs

operators in DBI action:

. A | | |
fl@)=—= for ¢ € (orr, duv)

N
In the 4d dual, inflaton is moving towards the origin of the moduli space. Conformal
H.d. operators from integrating out states massless at the origin. invariance

e  Does it help with fine tuning?

. Generic?



DBI predictions

P
. 2 — ’X
Reduced speed of sound:  ¢g = Px +2XPxx
Expanding the actions one gets powers of y>>1
11 5.5 9 1|26 5 X0
Lo=— |70 — —(V)* + ... 5:— @ — V)?
2 7s 27 ¥ 242 (VC,O) + ] 3 s [ 2¢4 &2¢4(70< (70) +
Ce= Y‘l <1 NG
equil. 3_5 i 1
P 1 H? L 108
5 8m2M3 co€ |, 1 i
° —151 < fEl <9253 at 95% C.L.
WMAPS limits
r = 16 cs€

e GW are suppressed wrt standard Kinetic term ®

e Quite hard to measure both r and fy; cail- unless €>>In_-1I

(e.g.1n exact AdS with V =m? ¢2, In-11 1s O(€?))



Consistency relation for GWs

e For (and only for) a Lagrangian P(¢, X) = f(¢) ™! \/1 + f(9)X —V(¢)  Lidsey Seery 06

equil. 99 (1
NLT g\ 2 r = —8csny

DBI consistency relation.
It involves GWs + NGs

Probably impossible to measure. Unless In-11is O(g?) with a large n, =-2 €

* A rough verification of the standard consistency relation
(say n, is not 10 times larger than expected) gives useful info on c;



Lyth in the throat

Baumann McAllister 06
General conical throat:
ds® = h™ "2 (y) g datda” + h'/* (y)gs;dy’ dy’ gi;dy’'dy’ = dp* + p*dsk,
: C e Ap\2 4
The inflaton range is limited by the 4d Planck mass: (—) < = N>1
Mp N

What happens to Lyth’s bound at large speed?

L=P($,X=(00)?) T = Mgb(?,/gb — Py e _H_ X@

/ Au /Nend r 1
0

r = 16 cq€ — =

For DBI: csPx =1 Same Lyth’s bound. Equally hard to produce GWs...



Lyth in general

ASO B /‘Nend r 1 dN
Mp B 0 8 CSRX

= If ¢,P x > 1 Ihave detectable GWs with sub-Planck displacement.

Do you have a model?

= The bound is obviously not invariant under field redefinition.

Is the correct normalization 1.e. a canonical field at low speed?



| <

/ General approach
\C\ s with Cheung, Fitzpatrick, Kaplan and Senatore 07

Usual approach to inflation:
1. Take a Lagrangian for a scalar L(¢,0,,¢,0¢...)

2. Solve EOM of the scalar + FRW. Find an inflating solution a > 0
¢ = ¢o(t) ds* = —dt* + a*(t)di”

3. Study perturbations around this solution to work out predictions
We want to focus directly on the theory of perturbations around the inflating solution

* Time diffeomorphisms are broken: ¢ — ¢ + £°(¢, @) 5¢p — 8¢+ o(t)€"
e In unitary gauge ¢(t,7) = ¢o(t) the scalar mode is eaten by the graviton:
3 degrees of freedom. Like in a broken gauge theory.
* The most generic action in unitary gauge
o 4 Lo 72 17,00 _ ar2 (a2 i *M?(t)él
S = / diz /g [§MPIR+ MZH ™ — M2 (3H + H) o

VT (414 . My(t)?
%(gooﬂ%)hﬂ-'_ Uzét)

(" + 1)

SKM,2 + ] .



Construction of the action in unitary gauge

Inflation. Quasi dS phase with a privileged /\/
spatial slicing /\/
Unitary gauge. This slicing coincides with time:

’ t=const
SH(F. 1) = 0 /\/

Most generic Lagrangian built by metric operators
* Generic functions of time
o Oyt = 52 : upper O indices are ok. E.g. 9" R™

» Geometric objects of the 3d spatial slices: e.g. extrinsic curvature Ky

S = /(1437\/ —4g F(R;Lupasgoos [(m/s vﬂat)

e One can isolate linear terms from the others

, 1 1 , 1 .
S = / d*a \/_—gbI\Jl%lR +c(t)g" — A(t) + aﬂ»ﬂfg(t)‘l(goo +1)% + gﬂ»fg(t)‘l(goo +1)3 +
M (t)3 S 11\_[2 t)? - ;’1\'_;[3(15)2 el e
- 12( S (g% + 1)6KH, — (*) 0K, 2 = == 0" 0K + ]



Fixing the tadpoles

Background evolution fixes c(t) and A(t). Higher order terms only affect perturbations
1

Friedman equations H?> = —[c(t) +A(t)]
. 3Mp,
g1ve: a . 1
~-=H+H? = — 2¢(t) — A(t
a =T 31\.11_31[ o(t) ~ A®)]

S = / iz /=g [%I\JE,IR + MEHG™ — ME,(3H? + H) + %]\Ig(t)‘i(goo +1)% + %]\Jg(t)‘l(goo +1)2 +

I, ()3
__1\112( ) (g% + 1)5KH, —

]\»72(15)2 ]\713(13)2

SKH,2 — SK, K, + .|

Simplest case: /d4x V-9 [—%(6%5)2 - V(¢)] — /d4$ V=g !— ('750(;)2900 - V(cbo(t))]
5 = [dte v=3 Ploo(t)d™. o(t)

L = P(X,¢), with X = ¢"0,,00,¢. .
MA(t) = ¢o(t)*0"P/OX™



Equivalent to the usual language

, 1 - o1 , 1 v .
S = / d*z /=g [?UI%IR + MEH g™ — M(3H? + H) + - Ma(t)* (9% +1)* + aﬂfg(t)“(g"“ +1)° +

M (t)? Ms(t)? Ms(t)? i
= [12( E (g% 4 1)sKcr, — [22( S sxcn,? L%()OI(“,,OK”M + ] .
00 1Y 9 b
g — 9" 0,000 t— ¢

* You have a Lagrangian for P(¢, X, ¢...) with the wanted background and ¢=t
* Gets rid of ambiguity of field redefinition

 [f I add a e.g. quartic operator this will not affect the previous orders



Slow-roll inflation...

Set to zero all additional operators: My = Mz = M; = My... = 0

1 .

+MEH(t+7) (14 7) g% + 2(1 + 7)9img®™ + ¢"0;m0; 7)]

From terms of the form:  ~ M H#0g”  mixing is relevant at E_. ~ ¢/2H
g miXx

MPIR M2 H ( (a”;)2>]

At E~H + leading order in slow-roll: Sy = / d*z/—=g

a
R o - H?2
(me(k1)e(ko)) = (27)36(ky + Lz)Qk’; > A free scalar in dS!
1
After horizon crossing one switch to T =0 gi; = a*(t) [(1+ 2¢(¢, T))dij + 7ij]

which is (non-linearly) conserved t—t—7(t,7) C(t, %) = —Hn(t, ©)

Standard results:

L H? 1 d H? H, H,
k1)C (ko)) = (2m)30(ky + ns — 1= log —— =4— — —
<C( l)C( 2)> ( T ) ( 1+ 2) 46*1111%1 kg dlogk ‘Hx‘ Hg H.H,




...and its high energy corrections

Additional operators cannot be really zero. At least radiatively generated

~ -’
REN e : Equivalent to an operator
) T~ (g% 4+ 1)2H? log A ) 96t og A
A7 . . S A4 ¢ log
M2 Fg® M2, g% Mg,

The speed of scalar perturbations will be: 1 —¢s ~ My /(|H|Mg) ~ [H|/MB) Z - 1071

Not very interesting...

Additional operators may be much bigger They systematically encode the effect of new
with new physics below M, physics on slow-roll inflation
~ Physics beyond SM
Experiments constrain the size of the operators
E.g. GW consistency relation , (- o, » - - H?1
g Y (v (ki)™ (ko)) = (2m)°0(k1 + kz)mpdss/ ng = —2¢
P11

L L 2 : -y
(C(F1)C(R2)) = (27)38 (1 + I H* i % Cg spoils prediction
Mo M for GW tilt

Rough verification of the relation would set a limit: My < Mg)|H|



Small speed of sound...

Sy = / dtz\/—g BME,IR — M3 H (~2 - > + 2My
Fixed by background! / 01 4
y backgro oM}

Pathologies for Z > 0 ? Not always.. . s =1 V2 E
(with Luty, Nicolis and Senatore 06) Pl

o Lorentz invariance is broken and cg=1 is not protected

 c>1 not compatible with Lorentz invariant UV theory

— 4
(Arkani-Hamed etal 06) My >0

P R Ve . P 3 N S N S (7 AN S
S”:/dél*” 9 [_521 <W2—C§ 5 >+ﬂ'ff2>1H<1—C—%> (W3—7r 5 )—§M347r3...

2
s a

As we did in the simplest slow-roll case:

—
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...and large Non-Gaussianities

Cubic terms for the Goldstone: e Non-linear realization of diff forces relation
between cgand NG
2 7 1 . 3 -(3z’7T)2 4. 4.3 .
Mg H (11— 5 ) (77— | - g My e Number of independent operators
’ » Experimentally they give equilateral NG with

slightly different shape
(see Chen, Huang, Kachru and Shiu 06)

I 2
'C#(VW)Q Hm (aﬂ-) H equil.

Level of non-Gaussianities: ~ T~ — f ~ —
Lo H272 Cg Cg C NL #(Vm)2 c2

Experiments set limits on M, 85

Explicit calculation gives: fx =

or equivalently on cq 324 2



WMAPS limits: —151 < fo1" <953 at 95% C.L. —> | cs>0.028

(barring cancellations with M)

Planck: |f1sl(iuﬂ'| < 20 cs > 0.1

LSS seems promising for local shape, not for this

Can CMBPOL help? Very marginally

Similarly for 4-point function. At leading order in slow-roll: (g00+1)2, (g00+1)3, (g00+1)4

g \4
Lo (B7) w2, 1,
~ 7t~ 7~ —(° . Huang, Shiu 06
Lo H?272 A’ c’:}q s

Contribution linked to cq:



Local
VS Equilateral

Local shape

High
gher derivative sha
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Multi-fi
Iti-field model
S

Modi
n

e The N
G si
gnal is
conce
ntrated on differe
nt confi
guratio
ns.

[ ’1"he
y can be
eaSily d .
istinguished (onc
eNGisd
etected!)



Local/equilateral + consistency relation

Maldacena, 03
PC, Zaldarriaga, 04
Cheung etal, 07

Under the usual “adiabatic” assumption (a single field is relevant), Chen etal. 07

INDEPENDENTLY of the inflaton Lagrangian

- - dlog(k3 Py, k
kle()«ElCEQCEQ = —(277)353(2 ki) Py, P, [ 8(ks D, ) +O(—=

d lOg kg kg )

ds? — —dt2 + e26(@) 42 (t)dz;da The long wavelength mode is a frozen background
| I for the other two: it redefines spatial coordinates.

ns —1 <1  Inthe squeezed limit the 3pf is small and probably undetectable

* Models with a second field have a large 3pf in this limit.

Violation of this relation is a clear, model independent evidence for a second field
(same implications as detecting isocurvature).

* This is experimentally achievable if NG is detected.



Bimodal?

For GWs
r ~0.01 separates qualitatively different models Ap 2 Mp

This threshold is also the ~ experimental sensitivity
For NG

1. f,cil->few separates models with ¢, significantly < 1
2.ty local > few is typical of curvaton/variable decay models

This threshold is also the ~ experimental sensitivity!!!



dS limit: ghost inflation

Arkani-Hamed etal 03

In the dS limit one has to consider higher derivative terms:

l'_ 2 312 J.
/(141’\/ ( Ma(t)* L OKM, — Uz(t) SKM, 0K H) —_— /(14 [ a4(f)z ™ )2]

e : : 2
Non-relativistic dispersion relation: w o< K

| | M2 1 e (H\
4. (onrs4.-2 92 1)2 =\ 35
/(1 x [24\[2 T — 5 0—4(()1 ) ] PC T \M

£7'r )2 H 1/4
 High level of NG: (5 E o~ (-)
2

* GWs are probably small

e n.= 0 and they can be tilted red or blue (!!) adding a potential

Here the  language is mandatory!



Beyond slow-roll in multi-field models

P=P (XIJ, @K) XI'] = —%@L@I@“q’)'] Langlois etal 2008

What is the speed of sound of adiabatic and isocurvature modes?
e If we have only P (X = GU((b)XU, ®) locally I can make Grj = 01

P((061)* + (0p2)* + ...) Only the adiabatic ¢ #1

e In general there is no symmetry keeping ¢ =1 for iso. modes

Indeed N T A ij .
neee (Porj> + 2P pgs <1 > XM5Y QIQ7 — Po1joh0,Q"0;Q”

In general both adiabatic + isocurvature have ¢ #1



Multi-field DBI

Motion of a probe brane in: ds®> = h~1/? (yK) guvdxtdz” + hi/? (yK) Grs(y™) dy'dy’

L=-Tsh'/=g \/det(dff +hGrjorelo, )

D=1-2fGr X" +42x"x —sxVxIxB 16 x x I xExT

Not of the special form: we expect c#1 in all directions.

Indeed all direction share the same ¢, =y~

Just a geometrical effect: propagation in a direction perp gets y!
(independently of which branon I look at)

iso. I O_'y

—>

ad.



Qad

Cs

e But normalization of the action is different in different directions: Qs >~

o Isocurvature modes are generated for m < H/c, . Easier than usual!

Pr = Prs« (1 + T?%S) Conversion isocurvature --> adiabatic
P 1
Consistency relation: r = % = 16668% ®)?

NG: equilateral from horizon crossing + local from conversion iso/adi

In DBI. Horizon crossing terms <QadQs Q5> same shape as <Qaanand>

equit _ 30 1 1
NL 108 ¢2 14+ T2 ¢

@ + local contributions



Executive summary

Good motivations to study non-minimal models.
Systematic way of encoding deviations from the minimal slow-roll.

Equilateral non-Gaussianities are very robust.
 They can only be produced in this way
e  They must be there

e  Planck will get down to If; euil| <20, ¢,> 0.1

GWs are more suppressed than in minimal models (¢ >1 ?).

They can be seen as a way of constraining these models.



Reintroducing the Goldstone

At sufficiently high energy the Goldstone mode decouples.

_, 1 1 .
S = / dtz — ZTI F, F" — §mZT1' A A" where A, = AZT“‘.

Gauge transformation:

1 ) . 1 ‘ J_
A, — UAUT + éuaﬂU' ='Up,Ut. S= / d'z — 4T1 Fl, F — EiTlD#U'DHD .

1
g 9°
Gauge invariance is “restored” introducing the Goldstones: U = exp [iT“7"(t, T)]

) T (t,T) =2\ T (t, T
Under a gauge trans. Awe impose: € (£:2) = A(t,7)e (8:2)

Going to canonical normalization: 7. = m/g - ™ Cutoff:  4mm / g

. : 2
Mixing with transverse ™" 450 a _ . qagu_a

component: g Irrelevant for £ > m

In the window: m < E < 47mm / q The physics of the Goldstones is perturbative

and decoupled from transverse modes



Doing the same for inflation

Consider for example: / d*z /=g [A(t) + B(t)g™(x)]

: : ~ LS _ 07°(x) 07° (0
Time diff: t—t=t+&(2), i —7=17 9" (x) — g% (@ (x)) = g,t(f) g:z'(f)

g™ ()

We get: /d% vV —9(7)

At - '(a(@)) + B(t - £(2(3)) —3=; R

At — 2(x(7))) (t — €9(=(F))) gw,@]

~

To restore diff invariance we promote & to a field: & (2()) — —7(T)

The action / &z /—g(7) [A(t () + B(t + () 28 g;;(‘”)) ot . ;(“’)) guz/(x)]

is invariant if 7 transforms non-linearly:  7(z) — 7(z(z)) = 7(x) — ()

Cosmological perturbations probe the
theory at E~H

Decoupling limit.
At high energy, no mixing with gravity.

, 1. 0 o .o (Oym)? .0 . om)?\ 4., ..
S, = / dtz\/—g [511.11%13 — M3 H (T'rz _ TQ ) + 2My (frz o il 7_;) ) - gﬂ.fgfﬁ’ - ]
a a



