"Fgfit" pixel-based foreground subtraction code for experimental design applications

Clive Dickinson (IPAC/Caltech/JPL)

 See Eriksen, Dickinson, Lawrence, Baccigalupi, Banday, Górski, Hansen, Lilje, Pierpaoli, Seiffert, Smith and Vanderlinde 2006, ApJ, 641, 665
for details of fitting algorithm and example application to WMAP/Planck simulation.

CMBpol workshop, Fermilab, 23-26th June, 2008.

Foregrounds!

- Foregrounds are probably the main problem for B-modes
 - Synchrotron ~10% polarized on average!
 - Dust ~5% polarized on average.
 - At least others are minimally polarized
 - magneto-dipole dust emission? (we hope not!)
- At large angular scales
 - noise *will* be sub-dominant
 - foreground subtraction critical
 - Propagation of error bars!
- Masking will help, but at I~10, cosmic variance is serious!

Component separation

Many methods

- Blind (e.g. ILC, ICA)
- Semi-blind (e.g. SMICA, ICA-variants)
- Template fitting (e.g. WIFIT)
- Parametric fitting (e.g. FGFIT, Commander)
- Propagation of error bars is critical, especially for Bmodes
 - Forecasts should be done with codes that propagate errors (few codes can do this properly!)
 - Pixel-based codes are the only way ("Lyman Page")
- Modelling errors are particularly difficult
- Bandpass (color) need to be included
 - FGFIT & Commander can do this

FGFIT Method: Basic idea

FGFIT is a pixel-by-pixel "maximum-likelihood" estimator

- MCMC to sample full likelihood (see Eriksen et al. 2006)
 - Assume uncorrelated Gaussian data

$$\ln \mathcal{L} = -\frac{1}{2} \sum_{\nu=1}^{N} \left[\frac{d_{\nu} - S_{\nu}(\theta)}{\sigma_{\nu}} \right]^2 = -\frac{1}{2} \chi^2.$$

- Fit CMB, sych power-law, dust model etc. at each pixel
- Parallel code to distribute pixels over many processors
- Most powerful when considering many frequency channels at high signal-to-noise ratios (c.f. template fitting).
- Get individual foreground parameters and maps for free
- Full-sky analysis via low/high resolution analysis
- Propagation of errors thru power spectrum possible.
- Hans-Kristian Eriksen will show results using Commander a more superior (Gibbs) sampling code that can do the same thing but go directly to power spectrum (with full propagation of errors)

Eriksen et al. (2006)

Single pixel fits

We want to know what is the optimal design (frequency coverage, no. of channels, sensitivity distribution etc...).

- Difficult question -> large parameter space! (on-going study with C. Lawrence, M. Seiffert, H.K. Eriksen, K. Gorski & JPL group)
 - (also see Amblard, Cooray, Kaplinghat, 2007, Phys. Rev. D75, 083508)

Simulations based on a single (I,Q,U) pixel only! ("fgfit_pix")

- Computationally fast 1000 realizations of CMB/noise in ~1 min running on 256 3GHz processors (COSMOS at JPL)
- Fix the foreground model, or try a few variations on typical foreground contamination at high Galactic latitudes.
- Try different parameterizations of model to fit to (modelling errors)
- Should be good enough to see "which design is best".
 - Suited for detailed experimental design study

Nominal foreground model

"Nominal" sky model, for 2 degree FWHM pixels.
Based on WMAP analyses (e.g. Davies et al. 2006).

Component	Total-intensity (μK)	Spectrum ν ^β	Polarization fraction
CMB	70 (r.m.s)	0 (<i>T_{CMB}</i>)	1%
Noise	(varies)	(varies)	(varies)
Synchrotron	40 @ 23GHz	-3.0	10%
Free-free	20 @ 23GHz	-2.14	1%
Vib. Dust	15 @94GHz	FDS99 model 8 (~+1.7)	5%
Spinning dust	50 @ 23GHz	WNM (Draine & Lazarian, 1998a)	2%

Nominal Foreground Model.

Fitted for synch & dust only (amplitude & spectral index)

3 EPIC designs

- Assumes 30% bandwidth, 2xnoise for 1-yr mission, except option 3 (4-yr)
 - Noise levels from Jamie Bock scaled from 7arcmin pixel to 2degrees.
 - Fgfit takes into account effective frequencies (assuming top-hat bandpass)
- #1. 6 channels:
 - 40, 60, 90, 135, 200, 300 GHz.
- #2. 7 channels:
 - 60, 75, 90, 115, 150, 200, 300 GHz.
 - More channels in key range, rely on WMAP (8-yr) for at 23, 33, 41 GHz?
 - Should also consider *Planck* LFI (30,44 GHz).
- #3. 8 channels (4m option):
 - 30, 45, 70, 100, 150, 220, 340, 500 GHz.

Basic results

(average of 1000 realizations of CMB & noise)

EPIC design	Average Q/U CMB Error (µK)
EPIC #1 (40-300GHz, 6 channels)	0.108 µK
EPIC #2 (60-300GHz, 7 channels)	0.114 µK
EPIC #3 (30-500GHz, 8 channels)	0.0755 μK
EPIC #2 + 30GHz channel	0.0962 µK
EPIC #2 + WMAP 6-yr K-band	0.110 µK

c.f. *Planck* (for 6 frequencies), at this resolution, gives ~1.6 μ K error in Q/U. -> factor of ~15 better than Planck in Δ T!

Planck vs NTD vs TES

(nK!)

Table 2.2.2 Estimated Sensitivities After Foreground Removal					
Case	Planck	EPIC/NTD	EPIC/TES		
No foregrounds	325	35	11		
β_s and β_d fixed	592	77	26		
β_s and β_d fitted in 15° pixels	595	81	26		
β_s and β_d fitted in 10° pixels	599	85	28		
β_s and β_d fitted in 5° pixels	621	108	34		
β_s and β_d fitted in 2° pixels	751	203	62		

(Bock et al.)

Fits are for single pixels.

Sensitivity increases significantly (factor ~3) by fitting spectral indices over larger pixels Even worst case can reach r~0.01 (Bock et al.) (via "Knox" formula)

What does it mean?

- Much better than *Planck* by factor >10 in ΔT .
- EPIC frequency designs are within a factor of ~2 only
- TES better than NTD by factor \sim 3-4 in Δ T.
- Factor of ~3 worse when fitting spectral parameters at 2deg pixel scale
- #1 marginally better noise level even with 1 less channel than #2
 - "Low" frequency channel (40GHz) is important.
- #2 with WMAP (6-yr actually) has virtually no discernable effect on performance!
 - EPIC outperforms WMAP many times over!
 - Maybe Planck would do better (I should try this!)
- #3 significantly better (as you would expect!)
- Modelling errors?
 - Synchrotron sp. Index variations (ok here) and curvature / spectral breaks
 - CD to include curvature into Planck Sky Model
 - Polarized anomalous (spinning dust) emission? Probably ok.
 - Include ancillary data e.g. C-BASS, Planck 353GHz etc.
 - E.g. see http://www.astro.caltech.edu/cbass/

WMAP7 vs WMAP9

- Repeated similar analysis to see impact of WMAP9 vs WMAP7 for *Planck*
 - Planck ~1.55 μK.
 - *Planck*+WMAP7 ~1.40 μK (11% improvement)
 - Planck+WMAP9 ~1.35 µK (15% improvement on Planck or 4% improvement on Planck+WMAP7)

Including Design constraints

Need to include realities such as

- Focal plane area
- Total power consumption
- Assuming fixed N_{feed} too simplistic (Amblard et al.)
- Calculate sensitivites based on these constraints
 - Requires "shape" of sensitivity to be known a priori (e.g. constant signal-to-noise ratio)
 - Scale N_{feed} based on this to full up focal-plane and/or power limitation
 - Typically focal-plane area is the limitation

Frequency range (1)

- Lowest frequency is strongest constraint (larger feed)
 - BUT, is very important for foreground subtraction
- Larger frequency better in most cases with simple model!
 - (e.g. Amblard et al. 2006)
 - Modelling errors are key to defining this better!
 - Ground-based or WMAP/Planck may be important (particularly *Planck* at 353GHz)

Freq range (GHz)	Q,U error (μK)
30-250	2.40
40-200	2.82
50-150	3.88
60-100	11.7

Constant signal-to-noise ratio, 7 frequencies, logarithmic spacing

Frequency range (2)

- Constant signal-to-noise ratio (all channels)
- Keep end of frequency range fixed and vary the other
- 200GHz fixed. Optimum $v_{min} \sim 40$ GHz
- 30GHz fixed. Optimum v_{max} ~350GHz
- Modelling errors probably worse than this
 - 40-350GHz is likely the maximum range that we should consider
 - WMAP/Planck/other data will help (should be included)

Conclusions

- FGFIT (single pixel mode) is very useful for doing comparisons between experimental designs
 - Also useful for full-sky simulations
 - E.g. foreground cleaned CMB map with errors!
- Experimental constraints have to be folded in
 - ~40-350GHz is widest frequency range we should consider
- Modelling errors are the biggest unknown
 - Updated PSM coming soon (CD will provide maps)
- Commander (Gibbs sampling code) superior for getting absolute errors (e.g. on r)
 - Full propagation of errors naturally to power spectrum (see Hans-Kristian Eriksen's talk)

Advertisement!

Home A

Agenda Local Info

Registration

Contacts

CMB component separation and the physics of foregrounds

2008 July 14-18 Pasadena, California <u>Hilton hotel</u>

http://planck.ipac.caltech.edu/content/ForegroundsConference/Home.html