CMB Lensing and Large Scale Structure

Lensing Working Group Update

Christopher Hirata Fermilab – 6/26/2008

Observations

- 1. We don't know how much polarized CMB lensing will help cosmological parameters. Need careful comparisons to see if it will improve on Planck/JDEM/ground.
- 2. We have not established the robustness of the convergence power spectrum and de-lensing algorithms to sky cuts and foregrounds.
- 3. The polarized lensing community is extremely small. The (weighted) number of people working on data processing, systematics, and foreground issues is of order unity.
- 4. Observations #1 and #2 are because of #3: there's (almost) nobody working on it.

Plans & needs

- 1. LWG will conduct a DETF-like study to quantify parameter improvements from idealized CMB lensing versus other planned projects. Should establish science case in light of recent developments.
- 2. We know (within plausible assumptions) how to forecast point source contamination, expected to dominate. Can only do oversimplified calculations for Galactic foregrounds. This will be a spinoff paper.
- 3. What is the priority level of de-lensing investigations? The mission concept is extremely open-ended. We need guidance from viewers like you. (See last slide.)

The context

On CMBPOL timescale, we "will" have:

- Planck
- Stage II/III ground surveys:
 - > Optical/photometric: DES, Pan-STARRS, ...
 - BAO surveys: WiggleZ, SDSS-III (or something similar), …
 - > SZ: ACT, SPT
- JDEM (in some form)
- LSST?

... and maybe more

Dark energy: constant w

- Today: w to ± 0.065 (1 σ) from WMAP+BAO+SN (Komatsu et al 2008) with Ω_k floating
- DETF projections (including Planck + Stage II data) for Stage III (Albrecht et al 2006):
 > σ(w)~0.03
 - result essentially the same for all methods
- +JDEM or LSST: ~0.015 (×÷?)
- Ideal CMB experiment including lensing (Hu 2002), assuming flatness: σ(w)=0.06.
- CMBPol is not a constant w experiment.

Dark energy: varying w

• DETF endorsed(?) w₀,w_a parameterization:

$$w(a) = w_0 + (1 - a)w_a$$

- +JDEM or LSST: $\sigma(w_a) \sim 0.1 (\times \div ?)$
- Could allow more complicated a dependence, early dark energy?
- CMB lensing constraints coming soon. (LWG)

Neutrino masses

- Upper limits on m_v: ~0.2 eV (marginalized w, WMAP5+SN+BAO; Komatsu et al 2008)
- CMBPOL projected: 0.04 eV (3' beam, 1.4 μ K') ... but with no external data, marginalized w, α_s , Y_{He} (Kaplinghat et al 2004)
- Clear need to understand degeneracies and compare future projects in the same model space.

Other ideas?

- Possibilities for high-I polarization:
 - Number of neutrino species. Dark radiation?
 - > Scalar spectrum: α_s , $d\alpha_s/dlnk$, WDM/C+WDM ... ?
 - Modified gravity?
 - Non-Gaussianity?
 - "Neutrino" isocurvature mode?
 - Chern-Simons terms?
 - Test recombination history/exotic sources of ionization at recombination epoch.
- Some improvements will be from lensing, others from reaching CV limit on high-I Emode, others may require both.

De-lensing options

Mission strategy		Implication for de- lensing
1. Recombination + lensing from space		Lots of work on higher- order
2. Recombination peak only	a) De-lensing with ground high-l B-mode	correlation functions & algorithms
	b) Partial de-lensing with LSS	Less challenging? but misses most of the lensing B-mode power
	c) No de-lensing	Go home
3. Reionization peak only		