Corrugated Platelet Feed Arrays for Millimeter-Wave Imaging

CMB Polarization Technology Workshop
NIST/Boulder

Edward J. Wollack (GSFC/665)
Joshua Gundersen (University of Miami)
Why Corrugated Feed Arrays?

• CMB Polarization detection and Flight (COBE, WMAP, Plank) heritage:
 - DASI
 - CBI
 - Boomerang
 - CAPMAP
 - WMAP
 - QUAD

• Well Defined Illumination Function
 – Superior Beam Symmetry
 • Equal E and H-Plane Response
 • Low Cross Polarization (<-30 dB)
 – Low Sidelobe Response

• High Coupling Efficiency
 – Broad (>30%) Bandwidth
 – Low Insertion Loss
 – Low Return Loss

• Corrugated feeds are compatible with high performance polarization diplexing and microstrip based filtering approaches, waveguide cutoff minimizes RFI, and provide natural separation of IR and millimeter wave filtering needs

• Large numbers of corrugated feeds can be fabricated together in the form of platelet feed horn arrays in order to increase packing density and reduce fabrication costs.
What is a Platelet Array?

- A platelet array typically consists of a number of thin metal sheets with a common hole pattern with varying hole sizes on the different sheets. When these sheets are bonded together, a large array of corrugated feed horns can be formed.

- A variety of different metals have been used (e.g. copper, aluminum), a variety of metal removal techniques have been used (e.g. CNC machining, chemical etching), and a variety of different bonding procedures have been used.

- Platelet arrays have been manufactured for use at millimeter and sub-millimeter wavelengths.

- The manufacturing process allows for a great deal of flexibility. Hence light-weighting the arrays is straightforward to implement and thermal-mechanical interfaces are straightforward.

- Platelet arrays can be manufactured in a cost effective manner (~5-10 times cheaper than electroformed versions) while preserving the superior performance and similar mass/horn of electroformed equivalents.

A 7 element prototype array for use at 90 GHz was manufactured out of AL6061-T6 on a CNC mill and bonded together using transient liquid phase diffusion bonding. (J. Gundersen)

A 1020 element prototype array for use at 400 GHz (WR2.2) was manufactured out of copper, the metal was removed using chemical etching and the platelets were bonded together using diffusion welding. (E. Wollack)
Advantages of Platelet Arrays:

• Platelet arrays of corrugated feeds use a well established machining/fabrication processes for metallic structures which are compatible with reliable cryogenic end use.

• Platelet arrays of corrugated feeds represent a viable technological path toward large number of detector elements in a focal plane.

• Platelet arrays of corrugated feeds provide a well controlled and repeatable illumination pattern that enables desired return loss, beam shape, spill, and instrument polarization response.

• Platelet arrays of corrugated feeds are compatible with high performance polarization diplexing and microstrip based filtering approaches, they provide a natural waveguide cutoff to minimize RFI, and they allow a natural separation of IR and millimeter wave filtering needs.

• The theoretical predictions and analysis tools for platelet array performance are very mature.
Disadvantages of Platelet Arrays:

• Relatively high metal mass/volume used in conventional approach requires lightening to produce more optimal component for space borne application, however, this material can provide shielding from ionizing radiation

• The simplest array realization requires flat focal surface. As in all antenna illumination approaches the f/ and number of optimally performing detectors pixels coupled in specification of the design. The total optical throughput may push one toward a system configuration with multiple optical assemblies to achieve the requisite number of pixels on sky.

• The detector coupling structures are waveguide based. As a result, the packaging requirement can be more demanding than planar array based approaches

• Depending upon system implementation, quasi-optical IR blocking filters may be required after feed illumination definition in order to achieve the desired thermal environment for the detector.

• Coupling to HE$_{11}$ mode has lower total efficiency and sampling than uniform illumination. This fundamental tradeoff between optical throughput and image quality is desirable to control measurement systematics.
Example: QUIET Platelet Arrays

91-Element W-band Array

19-Element Q-band Array
Example: WR2.2 Platelet Array

Platelet Feed Array: $\lambda = 0.9$ mm

Observation Angle [degrees]

Relative Gain [dB]

Return Loss for elements sampled better than 20 dB across test band…
Technology Readiness…

• The technical readiness of platelet feed array structures when used in conjunction with cryogenic coherent receiver systems is at level five or higher.

• For bolometric imaging systems the interface between the platelet array and the detector forces one to assign a lower level of readiness for the technology. Laboratory efforts in this area are underway and a TRL of ~3-to-4 is estimated for the approach at the present time.

• The resources required use this technology are dominated by detector and system level costs associated with fielding instruments which utilize and validate this technology.
Waveguide OMTs: Symmetric Designs

In Radioastronomy symmetric OMTs have demonstrated the best overall system performance at microwave thru mm-wavelengths

- In forms shown here design does not address the required transition to detector or beam forming functions…
- Block topologies can complicate coupling between waveguide and chip… would like power combiner bends on silicon rather than in metal housing…
- Planar solutions retaining these desirable properties are presently underdevelopment…

Technical Readiness Level > 5
Waveguide Transitions: Standard 2:1 Guides

Technical Readiness Level ~ 5
Waveguide OMTs: Planar Turnstile

Technical Readiness Level ~ 2-3

Symmetric Waveguide Sensor Block Diagram

- Antenna probes & waveguide choke joint
- Magic-T
- Crossover
- Filters
- Bolometers
- Readouts
Selected References:

Corrugated Feed Fabrication Survey:

<table>
<thead>
<tr>
<th>Fabrication Technique</th>
<th>Construction</th>
<th>Freq [GHz]</th>
<th>Emission Array</th>
<th>Mech / Thermal Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Machining</td>
<td>Single Metal Block</td>
<td><100</td>
<td>uniform</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Plunge EDM (low f/)</td>
<td><300</td>
<td>high</td>
<td>NxN</td>
</tr>
<tr>
<td></td>
<td>Split Metal Block</td>
<td><1000</td>
<td>pol</td>
<td>1xN</td>
</tr>
<tr>
<td>Negative Processing</td>
<td>Metal Casting</td>
<td><30</td>
<td>high</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Rosin Split Block / Vapor Deposit Metal</td>
<td><300</td>
<td>pol</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Metal Electroform</td>
<td><1000</td>
<td>uniform</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Silicon Split Block / Vapor Deposit (Walker 2003)</td>
<td><1000</td>
<td>pol</td>
<td>1xN</td>
</tr>
<tr>
<td>Stacked Washers</td>
<td>Isolated Epoxy Bond (Staggs 1996)</td>
<td><3</td>
<td>pol</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Eutectic Solder Bond (Bersaneli 1992)</td>
<td><10</td>
<td>pol</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Aluminum Dip Braze Bond</td>
<td><10</td>
<td>uniform</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Thermal Contraction Joint</td>
<td><30</td>
<td>pol</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Plated Carbon Fiber Composite (Kogut 2001)</td>
<td><30</td>
<td>pol</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Electroformed Bond (Dragone 1976)</td>
<td><100</td>
<td>high</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Laminated Etch Platelets</td>
<td><300</td>
<td>uniform</td>
<td>NxN</td>
</tr>
<tr>
<td></td>
<td>Diffusion Bond Platelets (Haas 1993)</td>
<td><1000</td>
<td>uniform</td>
<td>NxN</td>
</tr>
<tr>
<td>Other Hybrids…</td>
<td>Electroform Throat / Machine Flare (Erickson 1992)</td>
<td><300</td>
<td>uniform</td>
<td>-</td>
</tr>
</tbody>
</table>
Towards Larger Arrays:
397-Element W-Band Array
Platelet Feed: Design Considerations

- Tolerances relative to wavelength more critical than absolute dimensions. Simulation indicate ~1/100 wavelength deviations are tolerable between ring/slots and feed axis in flare section from a mode conversion perspective, however, must be tighten for low cross-pol applications...

- Consistency of dimensions are critical – an abrupt unintended shift in profile is undesirable – smoothly changing profiles is fabrication goal. Base plate with sufficient stiffness is required to control flatness upon cooling array structure.

- Each section needs to be mated firmly to the next section – gaps may result in a discontinuity in the current flow that in turn can distort field configuration...

- To control loss for the metallic interior wall of the feed to have high surface conductivity and be smooth. For cryogenic applications additional benefits may be achieved by employing pure metal alloys...
Feed Coupling and Undersampling

Coupling efficiency:

\[
\kappa = \frac{\langle E_{apt} \mid E_{feed} \rangle}{\langle E_{apt} \mid E_{apt} \rangle \langle E_{feed} \mid E_{feed} \rangle}
\]

where...

\[
E_{apt}(\pi r / \lambda f /) = \begin{cases}
\text{Airy Function for Ariy Disk Coupling} \\
\text{Gaussian for Gaussian Beam Coupling}
\end{cases}
\]

Recall: Aperture acts as a low-pass spatial filter with a cut-off angular frequency of \(\sim D/\lambda\). Thus, the angular Nyquist sampling rate is \(\sim \lambda/2D\).
Variation on a Theme: HE_{11} Feeds

- HE_{11} Feed Structures can be viewed as Transitions from Waveguide to Freespace
 - Stepped \rightarrow Corrugated Surface \rightarrow Continuously Profiled
 - Discrete Modal Excitation \rightarrow Continuous Mode Converters

- Expand Aperture via Flare to Set Beam Angular Scale
 - Diffraction $>\text{Geometric Angle} \rightarrow$ Frequency Dependent Beam
 - Diffraction $<\text{Geometric Angle} \rightarrow$ Frequency Independent Beam
When is a Circle a Square?

Constant Cutoff Mode Map: Circular-to-Square

Frequency [fc]

- TE(1,1)
- TM(0,1)
- TE(2,1)
- TM(1,1)
- TE(1,0)
- TE(0,1)
- TE(2,0)
- TE(0,2)
- TE(2,1)
- TM(1,1)
- TM(2,1)
- TM(1,2)
Planar Antenna Element Survey:

- Loop Dipole
- Half-Wave Dipole
- Full-Wave Dipole
- Bowtie
- Coupled Line Traveling Wave
- Co-Planar Strip Transmission Line

- Infinite Conductive Plane

Resonant Structures vs. Traveling Wave Structures

Low Impedance
- Ring Slot
- Half-Wave Slot
- Full-Wave Slot
- Bowtie Complement
- Coupled Slot Traveling Wave
- Co-Planar Waveguide Transmission Line

High Impedance

Z₀