Coherent Receivers: System Considerations

CMB Polarization Technology Workshop
NIST/Boulder

Edward J. Wollack
Observational Cosmology Laboratory
NASA Goddard Space Flight Center
Greenbelt, Maryland
Coherent Receivers

- Ability to make multiple signal copies without additional noise penalty...
 - Allow system architectures with null science data channel
 - Baseline/Offset potentially small and stable...
 - Simultaneous measurement of desired basis set by receiver topology
 (e.g., Q/U/I, Q/V/I, other...)
 - Rapid phase modulation used to stabilize receiver and measurement basis. Excellent systematic control. Due to high coupling efficiency addition of beam waveguide polarization modulators (e.g., HWP, VPM, other...) un-needed/undesired...
 - Relatively modest cooling and bias stability requirements. System noise properties degrade gracefully with detector ambient temperature...

- Complexity – reduced I&T risk – high reliability
 - Limited number of elements before setting noise
 - Many elements can be testing at room temperature...
Future Technology Needs

- **Approaching QL Device Noise**
 - 1/f-noise more pronounced as device noise approaches QL
 - charting the unknown, however, might anticipate higher phase switching rates to stabilize radiometer...

- **Optimal Element Design**
 - Phase switch, transitions, other...
 - Q/U polarimeter desire circular polarization from antenna – need high performance antenna polarization diplexers with greater bandwidth... – presently elements ~20% fractional bandwidth need to be pushed to full waveguide band...
Waveguide Hybrid Septum Polarizer

\[\text{RHCP} = \left(\text{TE}_{10}^{\oplus} + i \text{TE}_{01}^{\oplus} \right)/\sqrt{2} \]
\[\text{LHCP} = \left(\text{TE}_{10}^{\ominus} - i \text{TE}_{01}^{\ominus} \right)/\sqrt{2} \]

\[d\phi = \sum_{i=0}^{N} (\beta_o - \beta_i) l_i + d\phi_i \approx \frac{\pi}{2} \]

Centimeter wave solutions have from radioastronomy have been demonstrated…