Sub-Kelvin Coolers for CMB Missions

Peter Shirron
Cryogenics and Fluids Group
NASA/Goddard Space Flight Center
Greenbelt, MD 20771
Top-Level Requirements

* Cooling in the 50-300 mK range
 * Refrigeration techniques
 * Fluid-based
 * Sorption cooling
 * Dilution refrigeration
 * Solid state
 * Adiabatic demagnetization (ADR)
 * Tunnel-junction micro-coolers
 * Heat sink temperature
 * Moving from superfluid helium dewars (1.5 K) to cryocoolers
 * Typically 4-5 K base temperature
 * JT can provide 2 K
 * Compatibility issues: peak heat rejection
 * Bias toward continuous systems, multi-stage architectures
3He Sorption Refrigerator

- Charcoal pumped pot
- Inherently single-shot
- Advantages: small, moderate cooling power (10 µW at 300 mK)
- Disadvantages: inherently single-shot, low efficiency, ~200 mK limit

Courtesy Lionel Duband, CNES

SPUD 3-stage

IRTS Cooler

Herschel SPIRE Instrument
Dilution Refrigerator

- Open cycle version is first to work in zero-g
 - Advantages: continuous, stable T, low cold mass
 - Disadvantages: low cooling power and efficiency (0.3 µW at 100 mK, <1%), large warm mass, limited lifetime
- Beginning work on closed cycle version
 - 50 mK, 1µW

Courtesy Gerard Vermeulen

Planck Cooling System
Planck Dilution Refrigerator
ADR

* Cycle based on magnetocaloric effect
 * Advantages: Very high efficiency, wide operating temperature range, dissipation-less temperature control
 * Disadvantages: inherently single-shot, magnetic fields, relatively large cold mass

XRS 1-stage ADR on Astro-E/2

2-stage breadboard for Astro-H
Tunnel Junction μ-Coolers

- Cooling produced by tunneling of hottest electrons in an NIS structure
- Advantages: continuous, direct cooling of detector, potential cooling at 50 mK regime, low mass, simple control
- Disadvantages: low starting temperature of 300 mK
- Demonstrated 190 mK from 300 mK

Courtesy Joel Ullom, NIST
Multi-Stage Coolers

- **Benefits of multi-staging**
 - Reduce parasitic heat load on coldest stages
 - Reduce size, mass; increase efficiency
 - Extend operating temperature, lower or higher
 - Continuous operation
 - Low T and Intermediate T
 - Higher cooling power per mass
 - Reduce peak heat rejection
- **ADR (as an example)**
 - Complexity reduced by passive heat switches
Cooling Capabilities

![Graph showing cooling power vs. temperature (T) for different cooling technologies: SPIRE 3He Sorption, Planck DR, Continuous ADR, Astro-E2 ADR, SRG/Astro-H ADR. The graph plots cooling power (µW) on a logarithmic scale against temperature (T) in Kelvin (K).]
Cooler Summary

<table>
<thead>
<tr>
<th>Technology</th>
<th>Configuration</th>
<th>Operating Temperature</th>
<th>Cooling Power</th>
<th>Heat Sink</th>
<th>Avg. Heat Rejection</th>
<th>TRL</th>
<th>Heritage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorption Cooling</td>
<td>3He, single-stage</td>
<td>300 mK</td>
<td>10 µW</td>
<td>1.5 K</td>
<td>3.7 mW</td>
<td>9</td>
<td>IRTS, Herschel</td>
</tr>
<tr>
<td></td>
<td>3He, two-stage</td>
<td>300 mK, 240 mK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3He/4He three-stage</td>
<td>2.5 K, 300 mK, 240 mK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADR</td>
<td>Single-stage</td>
<td>60 mK</td>
<td>0.3 µW</td>
<td>1.3 K</td>
<td>0.15 mW</td>
<td>9</td>
<td>Astro-E2</td>
</tr>
<tr>
<td></td>
<td>Two-stage</td>
<td>50 mK</td>
<td>0.4 µW</td>
<td>1.8 K</td>
<td>0.12 mW</td>
<td>5</td>
<td>SRG, Astro-H</td>
</tr>
<tr>
<td></td>
<td>Continuous, Four-stage</td>
<td>50 mK</td>
<td>6 µW</td>
<td>5 K</td>
<td>3.0 mW</td>
<td>4+</td>
<td></td>
</tr>
<tr>
<td>Dilution Refrigeration</td>
<td>Open-cycle</td>
<td>100 mK</td>
<td>0.1 µW</td>
<td>4.5 K</td>
<td>2.0 mW</td>
<td>7</td>
<td>Planck</td>
</tr>
<tr>
<td>NIS Coolers</td>
<td></td>
<td>190 mK</td>
<td></td>
<td>0.3 K</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3He Sorption</td>
<td>Open Cycle DR</td>
<td>Closed-Cycle DR</td>
<td>1&2-stage ADR</td>
<td>Continuous ADR</td>
<td>NIS µcooler</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>----------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Base T</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td></td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Heat sink T</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>++</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Cooling Power</td>
<td>-</td>
<td>-</td>
<td>?</td>
<td>+</td>
<td>++</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td>-</td>
<td>-</td>
<td>?</td>
<td>+</td>
<td>++</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Temperature Control</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Magnetic Fields</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Cold Mass</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td></td>
</tr>
<tr>
<td>Warm Mass</td>
<td></td>
<td>-</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maturity</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Cryocooler Compatibility</td>
<td>-</td>
<td>+</td>
<td>?</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Summary

- Several cooler options for 50-300 mK range
 - Considerable flight heritage
 - New technologies/architectures nearing TRL 5
- Multi-stage systems
 - Higher cooling power, efficiency
 - Continuous operation for ADR, sorption coolers
- System studies will depend on eventual cooling requirements
 - Detector dissipation
 - Wiring loads (mux’ing)
 - Intermediate temperature stages