Multi-band Dual-polarization Pixel for CMBPOL

“Focal plane area is the most precious thing we have” H. Moseley talk

Adrian T. Lee
University of California, Berkeley
Collaboration

UC Berkeley
Kam Arnold
Greg Engargiola
William Holzapfel
Adrian Lee
Michael Myers
Roger O’Brient
Erin Quealy
Paul Richards

Space Science Lab
Huan Tran
LBNL
Helmuth Spieler

UC San Diego
Jen Edwards
Gabriel Rebeiz

Funded by NASA grant NNG06GJ08G
Advantages

• Dual-pol Pixel with 3:1 BW ratio and 5-7 bands
 – Gives Some Combination of:
 • Lower Size/Mass Focal Plane
 • Larger Frequency Range
 • More Frequency Bands
 • Higher Total Sensitivity

=> Potential for a significantly lower cost mission
Disadvantages

• Requirement for $T < 1\ \text{K}$ aperture stop
 – Possible to eliminate requirement
• Slightly elliptical ($< 5\%$) beams may require:
 – Accurate characterization
 – Mitigation via modulation or obs. Strategy
• Currently at low TRL
Planar Antennas

• Double-dipole: two dipoles driven in phase
Polarbear Array
2009 Test-Phase at Cedar Flats

- Op. Eff. $\sim 35\% \rightarrow 45\%$
 (w/ AR coating on Si lens)

184 Bolometers, 150 GHz

Single Pixels: Myers 05 APL, Myers 08 LTD
Classic Planar Log-Periodic Antenna

- “Teeth” resonate over narrow range of frequency
Sinuous Antenna

• Four arms -> Dual polarization
• Opposite arms couple to linear polarizations
• Adjustable parameters: Geometric scaling factor, arm opening angle
• Self-complimentary: Constant impedance, “wire” or “slot” operation
Lens Coupling
Antenna w/Contacting Lens

- Contacting lens focuses beam pattern
 - Surface of lens is analogous to horn aperture
- Antenna is small compared to pixel
 - Use area under lens for filters, switches, mux…
- Challenges: anti-reflection coating, mechanical alignment
Lens-Coupled Antenna Heritage

- Suborbital: CSO, SOFIA, ALMA...

- Space qualified on Hershel
Sinuous Properties
Wire-style antenna with lens
(UCSD Antenna Range)

- Fabricated on Roger’s 3010 ($\varepsilon=10$)
- Diodes between opposite arms in center.
- Eccostock12 Lens
- 6” hemisphere; 1.5” spacer
- Operated between 5-12GHz
Measured beams with lens

- X-pol < -23 dB
- Consistent with simulations
- Beams narrow with increasing frequency

Scalar Horn (Gundersen and Wollack whitepaper)
Measured beams with lens II

(e) 11 GHz Measured Cuts
(f) 12 GHz Measured Cuts

(g) Several channels of E cuts
Polarization Rotation

- Polarization angle rotates with frequency
- BUT, Depolarization within band \(\sim -27 \text{ dB} \) \((\cos 5^\circ = 0.996) \)
- Each band has to be calibrated
Slot-Sinuous with Microstrip Feed

- Microstrips:
 - cross slots in center
 - via to ground
- Planar & scalable
- ADS Momentum simulations
- Simulation: $S_{11}<-15\text{dB}$ if microstrip $Z=40\Omega$

Grey-slot
Blue-ground plane
Yellow-microstrip
Selecting Lens Size

- One lens covers factor 3 frequency range
 - Effective pixel size spans range of $D/(f \lambda)$
 - Factor 0.65 (optimum) in mapping speed over full range
- Phase arraying of lensed antennas gives \sim const beam

[Graph showing extended source mapping speed, FOV fixed]
Band Definition
150-220 GHz Diplexer

- 4 bolometers
- 4-pole \(\lambda/4 \) shorted-stub filters define bands
- Impedance & length of input lines chosen so one filter looks open in the other’s band.

- End-to-end receiver FTS measurement
8-Band Channelizer

- Each channel “drops” from backbone
- Bands are contiguous (good for space)
- “loss” at peaks is largely sharing btw channels
 - Reflection loss < 10%
Lenses and Antireflection Coating
Broadband anti-reflection coatings

Erin Quealy

Multi-layer TMM Chebyshev coating on hemisphere

TMM 3 ($\varepsilon_r = 3.27$),
TMM 4 ($\varepsilon_r = 4.5$),
TMM 6 ($\varepsilon_r = 6.0$),
TMM 10i ($\varepsilon_r = 9.8$)

TMM layers on flat silicon (with expanded teflon top layer):

Silicon Anti-reflection Coating

(Measurement taken at 1.2 K)
Mechanical Alignment of Lenses

- Lateral alignment requirement
 \[\lambda/10 > 100 \, \mu m \]
- Lithographic seating wafer
 \ (~ 10 \, \mu m \text{ accuracy} \)
- Wafer-wafer alignment marks
 - Use IR light
Needed Work for TRL 5-6

• A few cycles of: simulation and scale model <-> cryogenic antenna testing
 – Measure:
 • Beam patterns
 • Polarization properties
 • Efficiency
 • Band Definition

• Lab test broadband antireflection coating
• Lab test log-periodic channelizer
• Test in suborbital experiment e.g. Polarbear, EBEX, or SPT
Low-cost Mission Concept enabled by Multi-band Pixels
Cartoon high throughput single small aperture

• 4K Crossed-Dragone
 – 30 cm aperture
 – 26 cm focal plane
Cartoon high throughput single small aperture II

26 cm < 40-100 GHz

- 100-290 GHz

- 650 Pixels (5400 bolos)
 - 500 Pixels: 100, 130, 170, 290
 - 150 Pixels: 40, 60, 80, 100
Conclusions
Dual-pol multi-band Pixels
Summary

• Advantages:
 – Enables much less expensive CMBPOL design

• Disadvantages:
 – May (not must) require sub-K aperture stop
 – System design must allow beam ellipticity (< 5%)

• Significant work needed to reach TRL 5-6
 – Knowledge, facilities in place
END
Phase Array of Lensed Pixels

- Phase array lensed pixels: keep ~const beam size
 - Separate frequencies, then add RF
90-150-220 GHz Triplexer

- 6 bolometers on triplexers
- Design principles generalize to three or four channels

IE3D Simulations

[Graph showing transmission characteristics for different frequencies]
Single-color pixel design

Crossed Double slot dipole
(Chattopadhyay and Zmuidzinas, 1998, Myers et. al., 2005)

Si lens

Dolph-Chebyshev microstrip transformer
(McGinnis and Beyer, 1998)

Shorted $\lambda/4$ stub 5 pole microstrip filter

Microstrip crossover
Measured beams with lens

- X-pol < -23 dB
- Consistent with simulations
- Beams narrow with increasing frequency