Refractor for CMBpol

CMBpol Technology workshop 28 August 2008,

BICEP: 0.3m

SPT: 10m

Photo: Steff Richter

BICEP optics

- Wide-field refractor:
 - Cold Optics: 2 lenses + filters
 - HDPE lenses (Darren Dowell)
 - Teflon AR coat (Chao-Lin Kuo)
 - 30cm -> 0.9°, 0.6° FWHMs
 - High throughput, 17° FOV
 - Instr-pol< 1%, Cross-pol< 0.01%
 - Flat, telecentric focal plane
 - Ready for lithographed arrays!
 -> BICEP2/Keck, Spider
 - ->CMBpol?

Why did we choose a small refractor?

- High throughput in smallest possible package
- Efficient (\$) to integrate / deploy
- Stability of 4K telescope &beams
- Ease of optical characterization (~100m range)
- Aperture filling calibrators
- Aperture filling waveplate (BICEP2/Keck)
- Superior sidelobe suppression

Why might CMBpol choose a small refractor?

- High throughput in smallest possible package (?)
- Efficient (\$) to integrate / deploy
- Stability of 2K telescope &beams
- Ease of optical characterization (~100m range)
- Aperture filling calibrators(?)
- Aperture filling waveplate
- Superior sidelobesuppression
- Monochromatic optics higher TRL
- easier to shield ?
- Proven heritage: BICEP1, BICEP2, Keck, Spider...

BICEP1 refractor: lessons learned...

BICEP1 analysis led by Barkats, Chiang, Yoon, Takahashi, Bierman

...lessons learned from BICEP1 come from their work. See astro-ph/0808.1763 **TEAM BICEP**

<u>Caltech</u> Andrew Lange John Kovac Denis Barkats Cynthia Chiang Greg Griffin Steffen Richter

NIST, Boulder Ki Won Yoon

<u>UC Berkeley:</u> Bill Holzapfel Yuki Takahashi

UC San Diego: Brian Keating Evan Bierman

> Cardiff U.: Peter Ade

JPL

Jamie Bock Darren Dowell Hien Nguyen Peter Mason Erik Leitch Viktor Hristov John Battle

<u>Stanford</u> Chao-Lin Kuo

<u>Chicago</u> Clem Pryke Chris Sheehy

CEA, Grenoble: Lionel Duband

IAS, Paris: Eric Hivon Nicolas Ponthieu

150 GHz / 100 GHz

Instrument U

Instrument Q

0

(Same

0

1

Dark Sector Laboratory

November 2005...

Early January 2006: a working instrument!

March 2006 – March 2008: Observations to-date

CMB obs started March 4th 2006

24 months (17500 hours) since then:

	HOURS
Observing the sky	10900
Fridge cycling, Cryo ops	1640
Calibration, maintenance, upgrades	4950

Observed Fields

Observations in 48-hour cycles:

	[day 2]	
A. cycle fridge	6 hrs:	D. GAL-weak
B. CMB (lower half)	9 hrs:	E. CMB (upper half)
C. CMB (upper half)	9 hrs:	F. CMB (lower half)
	A. cycle fridgeB. CMB (lower half)C. CMB (upper half)	[day 2]A. cycle fridge6 hrs:B. CMB (lower half)9 hrs:C. CMB (upper half)9 hrs:

Preliminary T/E/B Maps

-Data from first 2 years (2006 March through 2007 October).

- Temperature anisotropy measured with very high S/N
 - precise absolute calibration vs. WMAP on 2-day timescales.
 - faint striping due to ATM noise, removed by PSB differencing

Preliminary T/E/B Maps

- E/B maps (Weiner filtered, from Q/U maps used in analysis)

- Frequency jacknife maps of E/B are consistent with noise, as is the B signal map --> No evidence of foreground contamination.

 - Q/U jackknife map-derived 1-deg² noise in line with expectation: 100 GHz: 0.78 uK
 150 GHz: 0.62 uK

Where are we? Preliminary analysis is maturing...

- black points: simulation based on 2-yr data used in current initial analysis
- TE and EE spectra are already sample-variance dominated
 - First high S/N pol measurements around $l \sim 100$
- Level of initial BB limits will depend strongly on cuts
 - these are likely to be conservative in first round

Instrument Systematics

Table 1. Potential Systematic Errors for BICEP.

Instrument properties	Benchmark $(r=0.1)$	Measured
Relative gain error: $\Delta(s_1 - s_2)/s$	1.0%	0.4%
Differential beam size ^{<i>a</i>} : $(\sigma_1 - \sigma_2)/\bar{\sigma}$	4.0%	< 0.2%
Differential pointing ^a : $ \vec{r_1} - \vec{r_2} /\bar{\sigma}$	1.5%	$1.3\%^b$
Differential ellipticity: $(e_1 - e_2)/2$	9.0%	< 0.1%
Polarization orientation error: $\Delta\psi$	8°	0.7°
Polarized sidelobes to Galaxy ^c	- 8 dBi	< -38 dBi
Polarized sidelobes to ground ^c	-19 dBi	< -38 dBi
Cold-stage temperature stability ^d : ΔT	1.3 nK	$< 0.5 \ \mathrm{nK}$
Optics temperature stability ^d : ΔT_{RJ}	$10 \ \mu \mathrm{K}$	$< 0.7~\mu{ m K}$

^a $\bar{\sigma} = FWHM/\sqrt{8\ln(2)}$.

 b A differential pointing which averages 1.3% has been repeatably characterized to 0.4% precision.

^c At 30° from the beam center, based on the measured upper limit of 20% (-7 dB) polarized response in the sidelobes.

^d Scan-synchronous, over $\ell = 30 - 300$.

Beam shape effects

 Table 1. Potential Systematic Errors for BICEP.

Instrument properties	Benchmark $(r=0.1)$	Measured
Relative gain error: $\Delta(s_1 - s_2)/s$	1.0%	0.4%
Differential beam size ^{<i>a</i>} : $(\sigma_1 - \sigma_2)/\bar{\sigma}$	4.0%	< 0.2%
Differential pointing ^a : $ \vec{r_1} - \vec{r_2} /\bar{\sigma}$	1.5%	$1.3\%^{b}$
Differential ellipticity: $(e_1 - e_2)/2$	9.0%	< 0.1%
Polarization orientation error: $\Delta \psi$	8"	0.7°
Polarized sidelobes to Galaxy ^c	- 8 dBi	< -38 dBi
Polarized sidelobes to ground ^c	-19 dBi	< -38 dBi
Cold-stage temperature stability ^d : ΔT	1.3 nK	< 0.5 nK
Optics temperature stability ^d : ΔT_{RJ}	10 µK	$< 0.7 \ \mu \text{K}$

 $\frac{a}{a} = FWHM/\sqrt{8\ln(2)}$

^b A differential pointing which averages 1.3% has been repeatably characterized to 0.4% precision.

^c At 30° from the beam center, based on the measured upper limit of 20% (-7 dB) polarized response in the sidelobes. ^d Scan-synchronous, over $\ell = 30 - 300$.

- Upper limits on differential beam size and ellipticity easily meet specs for r=0.1 (and r=0.01)!

- Differential pointing was the surprise...measured to be significant even for r=0.1.

Beam Shape Measurements

Figure 6. The beam mapping setup on site consisted of sources Figure 7. Beams for each PSB pair are normalized mounted on top of fold-over masts. When using the mast on the and differenced to produce this composite differential MAPO building (200 m from the Dark Sector Laboratory), a flat beam map. The overplotted lines show the fitted cenmirror is mounted to direct the beams over the ground screen. troid offsets magnified by a factor of 100.

Beams were mapped in highbay prior to deployment (41 m)

- Achieved sufficient precision to assure beam effects not dominant for r=0.1

Subsequently measured on site using a mast (200 m) and moon.

-Differential pointing is only measurable effect

- repeatable/stable to current measurement error (0.4%)

Pattern of A-B differential pointing offsets

Evidence for similar pattern of A-B beam offsets in QUAD and BICEP beams.

- c.f. Clem's talk
- effect is smaller in BICEP
- Follow-up lab measurements to understand origin of effect are ongoing...
- Stable to current measurement error (0.4%), which in principle allows removal to subdominant level for r=0.01

Polarization Orientation

 Table 1. Potential Systematic Errors for BICEP.

Instrument properties	Benchmark ($r{=}0.1$)	Measured
Relative gain error: $\Delta(s_1 - s_2)/s$	1.0%	0.4%
Differential beam size ^{<i>a</i>} : $(\sigma_1 - \sigma_2)/\bar{\sigma}$	4.0%	< 0.2%
Differential pointing ^a : $ \vec{r_1} - \vec{r_2} /\bar{\sigma}$	1.5%	$1.3\%^{b}$
Differential ellipticity: $(e_1 - e_2)/2$	9.0%	< 0.1%
Polarization orientation error: $\Delta \psi$	4°	0.7°
Polarized sidelobes to Galaxy ^e	- 8 dBi	< -38 dBi
Polarized sidelobes to ground ^c	-19 dBi	< -38 dBi
Cold-stage temperature stability ^d : ΔT	1.3 nK	< 0.5 nK
Optics temperature stability ^{<i>d</i>} : ΔT_{RJ}	$10 \ \mu K$	$< 0.7~\mu{ m K}$

^a $\bar{\sigma} = FWHM/\sqrt{8\ln(2)}$.

^b A differential pointing which averages 1.3% has been repeatably characterized to 0.4% precision.

^c At 30° from the beam center, based on the measured upper limit of 20% (-7 dB) polarized response in the sidelobes.

^d Scan-synchronous, over $\ell = 30 - 300$.

Quoted benchmark is (I believe) for random errors per feed. Benchmark (r=0.1) for error on global orientation is ~ 1.0 degree.

Measuring Polarization orientation: the Yukical

Sidelobes

Table 1. Potential Systematic Errors for BICEP.

Instrument properties	Benchmark $(r=0.1)$	Measured
Relative gain error: $\Delta(s_1 - s_2)/s$	1.0%	0.4%
Differential beam size ^{<i>a</i>} : $(\sigma_1 - \sigma_2)/\bar{\sigma}$	4.0%	< 0.2%
Differential pointing ^a : $ \vec{r_1} - \vec{r_2} /\bar{\sigma}$	1.5%	$1.3\%^b$
Differential ellipticity: $(e_1 - e_2)/2$	9.0%	< 0.1%
Polarization orientation error: $\Delta \psi$	4º	0.7°
Polarized sidelobes to Galaxy ^c	- 8 dBi	< -38 dBi
Polarized sidelobes to ground ^c	-19 dBi	< -38 dBi
Cold-stage temperature stability": ΔT	1.3 nK	< 0.5 nK
Optics temperature stability ^d : ΔT_{RJ}	$10 \ \mu K$	$< 0.7 \ \mu \text{K}$

^a $\bar{\sigma} = FWHM/\sqrt{8\ln(2)}$.

^b A differential pointing which averages 1.3% has been repeatably characterized to 0.4% precision.

^c At 30° from the beam center, based on the measured upper limit of 20% (-7 dB) polarized response in the sidelobes.

^d Scan-synchronous, over $\ell = 30 - 300$.

Sidelobe characterization

- Extremely clean optical design:
 - Unobstructed aperture
 - Black forebaffle
 - Reflective groundshield
- Sidelobes mapped on-site using amplified sources on 30' mast
- Ground pickup reduced > 10³ compared to QUAD...

...no ground subtraction needed in analysis so far!

Thermal Stability

Instrument properties	Benchmark $(r=0.1)$	Measured
Relative gain error: $\Delta(s_1 - s_2)/s$	1.0%	0.4%
Differential beam size ^{<i>a</i>} : $(\sigma_1 - \sigma_2)/\bar{\sigma}$	4.0%	< 0.2%
Differential pointing ^a : $ \vec{r_1} - \vec{r_2} /\bar{\sigma}$	1.5%	$1.3\%^b$
Differential ellipticity: $(e_1 - e_2)/2$	9.0%	< 0.1%
Polarization orientation error: $\Delta \psi$	4º	0.7°
Polarized sidelobes to Galaxy ^c	- 8 dBi	< -38 dBi
Polarized sidelobes to ground ^c	-19 dBi	< -38 dBi
Cold-stage temperature stability ^d : ΔT	1.3 nK	< 0.5 nK
Optics temperature stability ^d : ΔT_{RJ}	10 µK	$< 0.7 \ \mu \text{K}$

Table 1. Potential Systematic Errors for BICEP.

 $\sigma = FWHM/\sqrt{8\ln(2)}.$

^b A differential pointing which averages 1.3% has been repeatably characterized to 0.4% precision.

^c At 30° from the beam center, based on the measured upper limit of 20% (-7 dB) polarized response in the sidelobes.

^d Scan-synchronous, over $\ell = 30 - 300$.

Actually, we have evidence for scan-syncronous \sim nK level thermal fluctuations in our thermistor maps, but only at certain scan rates and orientations.

These appear significant to polarization maps only for the largest scales (l < 50) but understanding which data and which detector pairs are affected has been a major focus in making cuts.

BICEP2/Keck refractors: if it ain't broke...

BICEP2 & Keck

ExploitBICEP refractor methodology to aggressively push downto r=0.01 using antenna-coupled TES and SQUIDTmuxarrays.

BICEP2 (2009 - 2011):

- Upgrade BICEP1LHe receiver
- 512 detectors @ 150 GHz

Keck (2010 - 2012):

•Pulse-tube receivers

• Up to 6 such monochromatic receivers on the existing DASI mount (3 X 288 detectors at 100 GHz, 2 X 512 @ 150 GHz, 1 X 512 @ 220 GHz)

BICEP2 focal plane, May 2009

BICEP2/Keck Refractors: new features

• 2flantenna-coupled feeds increase edge illumination from

BICEP1: -22 dB edge taper

BICEP2: -12.4 dB edge taper, so...

• Lens design reoptimized using ZEMAX (RandolAikin)

BICEP2: < 1e-5 calculated diff. ellipticity; VERY symmetric illumination

- Aperture stop refined (tapered HR10)
- AR coats still expanded PTFE, but optimized for monochromatic
- 4" Zotefoam window unlaminated, reducing scattering BICEP1: 1.5% transmission loss at 150 GHz (0.5% onto forebaffle) BICEP2: 0.3% transmission loss at 150 GHz

DETERMINING LENS CURVATURE:

OPTIMIZING W.R.T. ABERRATION: + SHARP FOCUS IN ARRAY - ASYMMETRIC ILLUMINATION OF APERTU

(REVERSE PROPOGATION)

(REVERSE PROPOGATION)

OPTIMIZING W.R.T. TELECENTRICITY: - ABERRATION IN THE FP + SYMMETRIC ILLUMINATION OF APERTU

(FORWARD PROPOGATION)

BICEP2: optimized lens design, monochromatic AR coat HR10 aperture stop

Refractor Readiness...

• BICEP has demonstrated that a wide field refractor can make sensitive measurements of the CMB polarization at l = 50-100 using no polarization modulation, even from the ground.

• Optical systematics have been characterized to level needed for r=0.01

→ TRL 5 ? 4.99 ?

• Differential pointing still poorly understood. Stable, and "not likely to be a serious concern" (Hinshaw/systematics), nontheless

- need lab measurements to trace origin of effect (AR coats?)
- need better optics code

• Need verification that optics systematics remain under control with more aggressive detector coupling (BICEP2 will address, ~6 months)

•CMPpol: alternatives for high-throughput, compact systems?

1.5m crossed design?