• Time-Division Multiplexers (TDM) – Irwin
• MHz Frequency-Division Multiplexers (FDM) – Dobbs
• Superconducting Microresonator - Maloney
1. Acceptable degradation of bolometer noise (compare to BLIP)
2. Suitable for multi-kilopixel bolometer arrays (sufficiently low lead count)
3. Low systematic error
 - Sensitivity to scan-synchronous B fields
 - Sensitivity to scan-synchronous vibrations
 - Electrical correlations, non-stationary noise
4. Low sub-K power dissipation (lead count and dissipated power) – question for cryogenics panel
5. Low power ambient temperature electronics
6. Prospects for flight qualification, cryogenic & ambient electronics
7. Sufficient stability – acceptable low-frequency noise and gain drifts. Constrains modulation & scan strategies
• Time-Division Multiplexers (TDM) – Irwin
• MHz Frequency-Division Multiplexers (FDM) – Dobbs
• Superconducting Microresonator - Maloney

Overall editorial comment

Both TDM and FDM should work for CMBPol, with different implementation challenges.

Superconducting microresonators are likely to be more scalable – whether they will be ready and flight qualifiable for CMBPol is an open question.