Observations of the Temperature and Polarization Anisotropies with Boomerang 2003

William Jones
Caltech/JPL
Observational Cosmology

Inflation Probe Systematics Workshop Annapolis, MD July 28-30

Boomerang 2003

The BOOMERANG Collaboration

California Institute of Technology V. V. Hristov, W. C. Jones, A. E. Lange

Case Western Reserve University T. Kisner, T. Montroy, J. Ruhl

University of Toronto C. MacTavish, C. B. Netterfield, E. Pascale

Universita' di Roma La Sapienza P. de Bernardis, S. Masi, F. Piacentini, G. Polenta, A. Iacoangeli

IPAC B. P. Crill, K. Ganga, E. Hivon

CITA D. Bond, C. Contaldi

JPL J. J. Bock

Cardiff University P. Ade, P. Mauskopf

IROE A. Boscaleri

ING G. Romeo, G. di Stefano

LBNL, UC Berkeley J. Borrill

Polarization Sensitive Bolometers: Enabling 3 generations of experiments

Polarization Sensitive Bolometers: Enabling 3 generations of experiments

Boomerang03

QUaD¹

Robinson Telescope²

Planck HFI³

astro-ph/0206254 and astro-ph/0606606

- ¹ Clem Pryke's talk this afternoon
- ² John Kovac's talk also this afternoon
- ³ Kris Gorski's talk tomorrow

Planck HFI

Boomerang 2003

Planck HFI

Boomerang 2003

Boomerang 2003: Experiment Details

Angular resolution	11 / 7 / 7	Arcminutes	
Frequency Coverage	145 / 245 / 345	GHz	
Sky Coverage	1.84 % (0.22 %)	760 Square Degrees	
Multipole Coverage	75 - 1400	-	
Polarization Modulation?	none	-	
Types of Detectors	PSBs / grids / grids	-	
Location	Balloon	-	
Instrument NET	63 / 161 / 233	μK s ^{1/2}	
Limit on r	< 0.36 (BB<8.6 μK²)	_	
Status	Final Flight: 2002/3	-	

Boomerang 2003: Instrument and Observing Strategy

- Optics: Off--axis Gregorian w/Dragone-ish conditions
- Band definitions: Resonant mesh filters
- Polarization selection : Polarization Sensitive Bolometers
- Polarization modulation : Sky rotation and scan strategy
- Scan strategy: Constant elevation scans
- Pointing reconstruction (accuracy): 2.5-ish arcminutes

145 GHz PSB Pixel

Boomerang 2003 Focal Plane

January 2003: Sky Coverage

Sky Rotation: The world's best polarization modulator! (if only it wasn't so darn slow...)

Boomerang 2002 Beams

January 2003: Sky Coverage

Boomerang Galactic Plane Survey

Boomerang 2003 145GHz

Boomerang 2003: sensitivity per 3.4' pixel

Boomerang 2003: sensitivity per 3.4' pixel

Boomerang 2003: Issues/Lessons/Concerns

- A well cross-linked map is critical for high fidelity polarimetry
 - Both scan strategy and polarization modulation (sky rotation/scan)
- Knowledge of absolute polarization angles
 - Overall focal plane offset (preflight measurements)
- Understanding the solid angle of the <~ 30 dB sidelobes
 - Required for extrapolating calibration to other scales (beam maps)
- Unbiased noise model
 - Power spectra bias / failure of consistency tests (lots of simulations)
- Knowledge of relative calibrations
 - Can generate spurious polarization (derived from cmb/calibration lamp)
- Characterization/stability of the detector transfer functions
 - Can generate spurious polarization (not well characterized in flight)
- Beam shapes not significant: science well below beamscale

Boomerang 2003: Consistency Tests

At the noise per pixel of B03 (and therefore ~ Planck) we are not limited by:

- Instrumental systematics
- Environmental systematics (eg atmosphere)

Crosslinking: decoupling instrumental systematics from the signal on the sky

Pointing reconstruction, system temperatures, RFI, microphonics, beam asymmetries, instrumental polarization, etc...

Figure 3.9: (PKS)0537-441, no background subtraction

Beam window functions: extrapolating from the angular scale of the calibration

Figure 3.10: (PKS)0537-441, using background subtractic

Figure 3.11: (PKS)0518-45

Figure 3.12: (PKS)0454-46

Signal and Noise Estimation: Precision

Signal and Noise Estimation: Accuracy

The effects of sample variance and bias on the noise estimation can be easily incorporated into the MC pipeline, or corrected via MC's.

Signal and Noise Estimation: Accuracy

Ensemble average transfer function of signal & noise MCs

$$\left\langle \widetilde{C}_{\ell} \right\rangle = \sum_{\ell'} M_{\ell\ell'} F_{\ell'} B_{\ell'}^2 \left\langle C_{\ell'} \right\rangle + \left\langle \widetilde{N}_{\ell} \right\rangle$$

10.000

The effects of sample variance and bias on the noise estimation can be easily incorporated into the MC pipeline, or corrected via MC's.

Environmental Effects

Environmental Effects

We like to think we planned it this way...

Transfer functions

Transfer functions

Errors amount to a really complicated gain mismatch

Boomerang 2003: Issues/Lessons/Concerns

- A well cross-linked map is critical for high fidelity polarimetry
 - Both scan strategy and polarization modulation (sky rotation/scan)
- Knowledge of absolute polarization angles
 - Overall focal plane offset (preflight measurements)
- Understanding the solid angle of the <~ 30 dB sidelobes
 - Required for extrapolating calibration to other scales (beam maps)
- Unbiased noise model
 - Power spectra bias / failure of consistency tests (lots of simulations)
- Knowledge of relative calibrations
 - Can generate spurious polarization (derived from cmb/calibration lamp)
- Characterization/stability of the detector transfer functions
 - Can generate spurious polarization (not well characterized in flight)
- Beam shapes not significant: science well below beamscale

Systematics to consider

Below is a list of potential systematic effects. Please address whatever effects you can from here in your talk; feel free to add more or qualify/expand on these. Quantitative limits (measured, calculated, or estimated) on these effects would be helpful, as would results of simulations with your observing strategy that take them to a power spectrum.

Systematic	Effect	
Crosspolar beam	E o B	
Polarization angle errors	E o B	
Pointing errors (on Q/U)	E o B	
Main beam asymmetry (before differencing)	$dT \to B$	
Sidelobes	$dT \to B$	
Instrumental polarization	$dT \to B$	
Relative calibration errors	$dT \to B$	
Pointing errors before differencing	T o B	
Gain drift before differencing	T o B	
Optics and spillover T variations	$dT_{opt} \rightarrow B$	
Scan modulated cold stage variations	$dT_{CS} \rightarrow B$	
Band shape errors, including modulator effects	foregrounds \rightarrow B	
Others?	?	

BOOMERANG flights: 1998 and 2003

