MAXIPOL

Shaul Hanany
- NA Balloon Borne
- Based on MAXIMA
- Pathfinder for HWP-based CMB Polarimetry
MAXIPOL Collaboration

Matthew Abroe, Peter Ade, Jamie Bock, Julian Borrill, Andrea Boscaleri, Jeff Collins, Paolo deBernardis, Shaul Hanany, Andrew Jaffe, Bradley Johnson, Terry Jones, Adrian Lee, Lorne Levinson, Tomotake Matsumura, Paul Oxley, Bahman Rabii, Tom Renbarger, Paul Richards, George Smoot, Radek Stompor, Huan Tran, Celeste Winant, Proty Wu, Joe Zuntz

School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
Department of Physics, University of California, Berkeley, CA, USA
Department of Physics and Astronomy, Cardiff University, Cardiff, UK
Jet Propulsion Laboratory, Pasadena, CA, USA
Computational Research Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
Space Sciences Laboratory, University of California, Berkeley, CA, USA
Astrophysics, University of Oxford, Oxford, UK
Astrophysics Group, Blackett Lab, Imperial College, London, UK
Physics Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
Department of Physics, National Taiwan University, Taipei, Taiwan
University of Rome, Italy
IROE – Florence, Italy
Hardware

- NTD-based spider-web bolometers (Bock)
- Cooled to 0.1 K
Hardware

- NTD-based spider-web bolometers (Bock)
- Cooled to 0.1 K
Hardware

- NTD-based spider-web bolometers (Bock)
- Cooled to 0.1 K
Observations

- 7.6 hours centered on BUM; 4.1±0.8 μK dust brightness
- Constant elevation scans: 2 deg p-p, 15 sec period
- 5.3 square degrees used for analysis
- Day+night Jupiter calibration scans
Maps and EE Power

Graph showing the power spectrum of the Cosmic Microwave Background (CMB) with different polarization maps. The graph plots $l(l+1)C_l/2\pi$ (in μK^2) against the multipole moment l. The data points represent observations from various experiments including MAXIPOL, CAPMAP, DASI (05), CBI (05), B03, and WMAP. The plot includes a best-fit line for the matter-antimatter model (ΛCDM).

Observational Cosmology - University of Minnesota
Rotating HWP Polarimetry

Amplitude and phase = P magnitude and orientation

Time (signal modulated at $4f_0$)
Rotating HWP Polarimetry

Amplitude and phase = P magnitude and orientation

HWP Angle
(4 modulations per full rotation)

- I, Q, U from the same detector
- Q, U at high frequencies
- Q, U near 4x rotation frequency
- Same beam for orthogonal polarization states
Frequency of T, Q, U

- Time domain signal $S(t) = A \cos\left[2\pi (4f_0)t + \phi\right]$
- Scanning the telescope across the sky modulates A (and Φ)

$$S(t) = A(t) \cos\left[2\pi (4f_0)t + \phi\right] = A_0 \sin \omega t \cos\left[2\pi (4f_0)t + \phi\right] \propto \sin[(2\pi (4f_0) + \omega) t + \phi] + \sin[(2\pi (4f_0) - \omega) t + \phi]$$

- Scan synchronous Q, U signal appears at sidebands of 4th harmonic
Polarimetry Hardware
Instrumental Polarization

- Conversion of un-polarized intensity to Q, U
- Modulated by HWP, if on sky side
- Sources
 - Differential reflection+transmission
 - Polarized emission
 - Polarization by diffraction

Sky sources - scan synchronous
Instrument sources - stable
Instrumental Polarization

- CMB $T \rightarrow Q, U$
- Primary (+secondary) $T \rightarrow Q, U$

- CMB $T \rightarrow Q, U$: 1% IP $= 27 \text{ mK}$
- CMB $\Delta T \rightarrow Q, U$: 1% IP $\sim 1 \mu\text{K}$
- Primary $T \rightarrow Q, U$: 1% IP $= 24 \text{ mK}$

- Reflection $T \rightarrow Q, U$
- Reflection $\Delta T \rightarrow Q, U$

- Emission (240 K, 1%)
- Polarized emission
Instrumental Polarization

- CMB T→Q,U
- Primary (+secondary) T→Q,U

- CMB T→Q,U: 1% IP = 27 mK
- CMB ∆T →Q,U: 1% IP ~1 μK
- Primary T→Q,U: 1% IP = 24 mK

P = 0 torr
P = 760 torr

window
• Knife edge diffraction
 – Can have P = 100%
 – P = 10% of 6K gives 600 mK

• Shaft T anisotropy
• Shaft emissivity anisotropy
• Shaft motion in beam
Time Domain Data
Rotation Synchronous Signal

- Raw data in HWP angle
- Power Spectrum
- Shaft Rotation
- Differential Reflection
- Instrumental Polarization
Fit for Synchronous Signal

\[HWPSS(t) = \sum_{n=1}^{8} \sum_{j=1}^{3} (A_{nj} + B_{nj}t) \sin(n\beta(t) + \phi_{nj}) \]

Amplitudes

- \(n=1 \): 1.5-106 mK
- \(n=2 \): 30-250 mK
- \(n=4 \): 33-600 mK

Amplitude drift

- 0.5% over 10 minutes

Varying amplitude

Constant phase
Synchronous Signal Removed

Power spectrum of Q, U:
99.5% of data
1/f knee < 60 mHz

synchronous signal removed
• Remnants of SS in CMB signal? Removal of CMB signal?
 – No. \((\text{simulated } Q - \text{recovered } Q)/\text{simulated } Q < 0.5\%\)

• Gaussianity of Q, U?
Scan Synchronous Component?

T map

U map
Scan Synchronous Component?

- Scan Synchronous IP is less than 1% for 10/12 photometers
- 4%, 5% for 2/12 (at edge of field)
- A uniform 4% IP would give undetectable level in our data
Polarization Rotation

- $5 \text{ deg} \rightarrow 0.2 \, \mu \text{K reduction in EE}$

- Measurement with $P=1$ source at window

- Calibrates HWP offset + pol. Rotation
Rotation Error Budget

- Instrument coordinates to sky coordinates: 2 degrees
 - Rotation of star camera relative to mm-wave beam

- HWP offset + internal pol. rotation: 2 degrees
 - Alignment of outside grid to analyzer grid

- Primary pol. rotation < 1 deg

- Error from polarization rotation is < 5 degrees
Rotation and CodeV

Polarization Rotation x10 (deg)

- Subtract mean rotation
- Mean absolute difference = 1.2°
MAXIPOL Summary

[Astro-ph:0611394 (instrument + results); 0611396 (data analysis)]

• MAXIPOL demonstrated a successful implementation of HWP polarimetry in CMB

• Stable offsets removed with no detectable residuals

• Q, U temporal power spectra
 – white to ~1 mHz
 – level consistent with detector+readout noise

• Residual scan synchronous IP and Pol. Rotation negligible.

• Continuous rotation + NTD-based bolometers: a substantial challenge