

Systematics in QUaD

Clem Pryke

Inflation Probe Systematics Workshop

28 July 2008

QUaD Collaboration

- Stanford: Sarah Church (Pl), Jamie Hinderks (NASA Goddard), Ben Rusholme (IPAC), Keith Thompson, Melanie Bowden (industry), Ed Wu
- ► Focal plane design, receiver integration, readout electronics, analysis

 Caltech/JPL: Andrew Lange (co-PI), Jamie Bock, John Kovac, Ken

Ganga (APC/CNRS)

- ▶ Detectors, calibration sources & methods
- Chicago: Clem Pryke (co-Pl), Robert Friedman, John Carlstrom, Tom Culverhouse, Erik Leitch (JPL), Robert Schwarz (South Pole)
- ► Mount, foam cone, DAQ, observations, analysis

 Cardiff: Walter Gear (PI), Simon Melhuish (Manchester), Lucio
- Piccirillo (Manchester), Peter Ade, Mike Zemcov (Caltech), Nutan Rajguru (UCL), Angiola Orlando (Caltech), Abi Turner, Sujata Gupta ▶ Cryostat, mirrors, fridge, cal source, analysis
- Edinburgh: Andy Taylor, Michael Brown (Cambridge), Patricia Castro (Lisbon), Yasin Memari
 - ► Analysis
- Maynooth: Anthony Murphy, Creidhe O'Sullivan, Gary Cahill
 - ▶ Optics design

Experiment Summary

- Angular resolution: 5.5/3.5 arcmin @ 100/150GHz
 Sky Coverage: 30/60 square deg with/without field difference
- Multipole coverage: 200-2000+
- Polarization Modulation: rotate whole telescope about line of sight
- Type of Detectors: PSB pairsLocation: South Pole (ground)
- Location: South Pole (ground)
 NEO: 510/450 uk/sqrt(s) per pair at 100/150GHz
- ▶ 9/18 good pairs so divide by sqrt(4.5)/sqrt(9) to get intrument NEO
- Status: ran three seasons, decomissioned fall 2007
- ➤ Results out: Instrument paper Hinderks et al arxiv:0805.1990, Results paper Pryke et al arxiv:0805.1944

The QUaD Telescope

- 2.6 meter Cassegrain radio telescope attached to front of DASI mount (3rd axis preserved)
- 31 pixel polarization sensitive bolometer camera (PSBs), no internal pol modulator (waveplate)
- Secondary supported on foam cone aperture blockage small and uniform
- DASI tower, equipment room, drive system, DAQ system re-used.
- Large, fixed, reflective ground shield

Optical Path

Lenses in the cryostat (cold)

Secondary Support Foam Cone

Zotefoam only manufactured in 6x3' flat sheets - adhesive causes 1-2% scattering

Foam cone designed/built at Chicago

Receiver Focal Plane

12 feeds @ 100GHz (6 arcmin), 19 @150GHz (4 arcmin)

Polarization Sensitive Bolometers

- Two orthogonal absorber grids measure linear polarizations
 - Sum measures total intensityDifference measures polarization
- Timestreams read out and recorded to disk separately
 - ▶ Scaled and sum/diffed in offline analysis

Array Projected on Sky

2 orientation "flavors", plus rotate whole telescope around line of sight by 60 deg

QUaD Observing Strategy

- Telescope scans 7.5 deg in azimuth as modulation on top of sky track (at Pole sky rotates around zenith)
- Scan 5 times out and back then step in el by 0.02 deg and repeat.
 - ▶ Build simple raster map no cross linking!
 - Scan at 0.25 deg/sec putting ell range 200 to 2000 at 0.1 to 1Hz in timestream.
- One run per day starting always at same LST
 (Start as observing field clears lab building)
- Cal, 8 hours CMB, cal, rotate telescope, cal, 8 hours CMB, cal (and 5 hour fridge cycle)

Location of QUaD Field

Relative Gain Cal

- Before can take pair diff. need to adjust relative gain
 - ▶ "Nod" the telescope in elevation to inject large signal from atmospheric gradient
 - ► Assume atmosphere unpolarized

(Well actually deconvolved, low-passed, deglitched, downsampled, relative gain calibrated)

...pair sum/difference...

.cut to "half-scans"... Azimuth 0.05 pair sum -0.05 0.05 pair diff -0.05 50 100 150 200 250 300 350

...remove 3rd order polynomials...

Field Difference to Remove Ground

- Scan two sub-fields separated by 0.5hr in RA
 - ▶ Sky signal different ground signal same

150GHz Spectra (as published)

- Signal to noise high! (except BB)
- No obvious jackknife cancellation failure...

Frequency Difference Spectra

Tests if pattern identical at each freq. (both freq. abs. cal'ed against same B03 150GHz map)

Calibration/Systematics Discussion

- Timeconst measure/deconv.
- Relative/absolute gain stability (and 1/f)
- Polarization angle/efficiency measurement
- Beam mismatch centroid offsets
- Far sidelobes inc. 100 deg ringlobe

Detector Time Constants

- Some dets have order 10% additive second timeconstant of few seconds
 - ► (Very similar detectors to Planck!)
- Can "perfectly" correct temporal response (deconvolve it)

Gunn sources from Kovac, analysis Pryke/Hinderk

Excellent Relative Gain Stability

Pair gain ratio is stable to <1% rms over full season!

Comments on Relative Gains

- Instrumental polarization completely degenerate with relative gain
 - ► Therefore a non-issue for a pair diff experiment
- We measure rel gains every 30 minutes
 - ► Fluctuating errors average down (T sometimes leaks to +Q, sometimes to -Q)
- Even systematic errors average down due to observing at different angles
 - ► In a sim with zero intrinsic EE/BB and fore/aft gain flat at 1.03 EE/BB power 1e-4 of TT power

Absolute Gain Stability

- Gain measured every 30 mins using calibration source
 - ▶ Raw values fluctuate by 3% rms over 2 seasons
 - ▶ After correction for loading gain supression 2%
- Focal plane had active temperature control highly recommended

Sum/Diff Timestream Noise Spectra

Pair diff has minimal 1/f noise

Measuring Polarization Efficiency/Angle

- Use polarized source to measure (near field) co- and cross-polar beams of each detector
 - ▶ Do this at many telescope rotations
 - ► Find polarization efficiency and angle

• Epsilon 0.05 to 0.10 and angles scatter by 1 deg rms around nominal

Accuracy of Polarization Efficiency/Angle

- Estimated by repeatability between measurements with source horiz/vert and with different source appertures.
 Random error in efficiency averages down over array
 - ➤ Systematic error leads to incorrect pol map cal

 ➤ Estimated sys uncertainty 0.02
- Random error on angle averages down across array
 Systematic error leads to E->B mixing
 - Estimated sys uncertainty 2 deg
 But in sim 5 deg bias has no effect for QUaD's sensitivity level!

"A" Bolometer Beams

"B" Bolometer Beams

Pair Difference Beams 150-9-4# -0.035 150-8-dif 0.032 150-10-61-0.132 00-2-4110.008 00.1.48 .0.010 50-19-61-0174 190-11-07-0 123 100-4-471-0-009 150-1-45 -0.003 150-2-511-0-033 100-12-411-0.000 50-18-67 -0.015 00.5.48.0.052 150-4-4110.008 150-7-61 -0.055 100-11-69 -0.003 50.12.610.005 90-6-91-0.002 150-5-4970 016 50-6-61 -0.038 50-17-49 -0:047 02 0 -02 50-13-65 -0.187 100-7-dH -0.105 190-19-49 -0 119 150-14-4110.053 RA

A & B Beam Half Power Ellipses

Centroid offset order 0.1 arcmin which is few percent of FWHM

Exaggerated Centroid Offset Vectors

Sets of arrows from different runs - offsets are repeatable

Centroid Offsets Obey Simple Model

Radial/tangential pairs offset radial/tangentially45 deg pairs offset tangentially

[►] Cause remains mysterious...

Far Sidelobes

Inner Circular Sidelobe
(from reflecting collar)
+/- 7 to 12 degrees
center pixel

Diffuse Sidelobe (from cone + primary) center and edge pixels

edge pixel

Outer Circular Sidelobe (reflection from cone) —center pixel: +100 deg. —edge pixel: +101 deg. (from diffracting edge)
edge pixel only:

Outer Circular Sidelobe (reflection from cone) center pixel: -100 deg: edge pixel: -99 deg.

"Inner" Sidelobes for Center/Edge Pixels

- Near field measurements using Gunn source
 - ▶ Ring due to scattering from collar baffle around cryostat window
 - ▶ Radial due to truncation of the beam inside the cryostat

100 degree Ringlobe Due to Foam Cone

- Caused by reflection from adhesive in cone
 - ▶ Probed in detail using Sun as source, and in lab measurements
 - ▶ Detailed model reproduces contamaination in CMB data

Conclusions wrt Future Space Mission

- After three years neck deep in QUaD data some comments...
- We showed that even on the ground gain stability (1/f) and relative gain cal. can be excellent:
 - ▶ I believe with careful design this can remain true for space mission
 - ▶ I believe rapid pol. modulation would do more harm than good
- Calibration of polarization efficiency and angle was a weak point...
 - ▶ OK for us but will be a big challenge for next generation
- Far sidelobes were a major cause of pain for us
 - ▶ Should be (completely?) avoidable in space mission
- Beam shape effects were not a problem for us. However for the future:
 - Calcs of these effects should NOT ignore averaging down across array and scan pattern
 - ▶ With knowledge of (stable) beam shapes can correct for much of the contamination
 - ► I believe in the end this last will be necessary to reach r=0.01