CMB Polarization Power Spectra from Two Years of BICEP Data

H. Cynthia Chiang
Princeton University

Path to CMBPol Workshop
July 1, 2009
Searching for B-mode polarization in the CMB

E-mode polarization: mainly sourced by density fluctuations

B-mode polarization: generated by inflationary gravitational waves and lensing

Inflationary B-mode amplitude is parameterized by tensor-to-scalar ratio, current upper limit is $r < 0.22$ (WMAP TT + BAO + SN)

Target inflationary B-mode at angular scales of $30 < \ell < 300$
Background Imaging of Cosmic Extragalactic Polarization

Caltech / JPL
Andrew Lange
John Battle
James Bock
Darren Dowell
Viktor Hristov
John Kovac
Erik Leitch
Pete Mason
Tomo Matsumura
Hien Nguyen
Steffen Richter
Graca Rocha

UC Berkeley
Bill Holzapfel
Yuki Takahashi
UC San Diego
Brian Keating
Evan Bierman
U Chicago
Clem Pryke
Chris Sheehy

Princeton
Bill Jones
Cynthia Chiang
Stanford
Chao-Lin Kuo
Jamie Tolan
NIST
Ki Won Yoon

IAP, Paris
Eric Hivon
IAS, Orsay
Nicolas Ponthieu
CEA Grenoble
Lionel Duband

Cardiff
NRAO
Peter Ade
Denis Barkats

H. C. Chiang
Overview of the BICEP telescope

Minimize polarization systematics
 Azimuthal symmetry
 Simple refractor, no mirrors

Optimize to $30 < \ell < 300$
 Beam sizes ~ 0.9 deg, 0.6 deg
 Field of view ~ 18 deg
 Observed sky fraction $\sim 2\%$

Frequency coverage
 100 GHz: 25 pixels
 150 GHz: 22 pixels
 220 GHz: 2 pixels

Signal-to-noise considerations
 PSB differencing
 South Pole: long integration over contiguous patch of sky, reduced atmospheric loading

(Yoon et al., astro-ph/0606278)
Primary CMB field: “Southern Hole”
- Dust emission 100x lower than median
- Total emission minimized at 150 GHz

48-hour observing cycles
- 4 x 9-hour CMB observations
- Az / el raster scans
- Fixed boresight angle \{-45°, 0°, 135°, 180°\}

Three years of data: 2006 to 2008
- Initial analysis: first two years
- Conservative data cuts

150 GHz FDS dust model
Instrument characterization

Bolometer transfer functions

Method: Gunn or noise diode source, analyze response to transitions

Result: relative gain uncertainty < 0.3% over 0.1 – 1 Hz after deconvolution

Relative gains

Method: atmospheric signal from “elevation nods”

Result: common mode rejection > 98.9%

Absolute gains and detector pointing

Method: cross-correlate BICEP and WMAP temperature maps

Result: gain uncertainty ~2%, centroid uncertainty 0.03° rms
Instrument characterization

Cross-polar leakage and polarization orientation angle

Method: rotating polarized sources (dielectric sheet, wire grid, etc.)

Result: cross-polar leakage uncertainty ±0.01, orientation angle uncertainty ±0.7°

Main beam shapes

Method: map far-field sources (thermal source and noise diode)

Result: average FWHM 0.93°, 0.60° at 100, 150 GHz; differential pointing 1.3 ± 0.4%

More details: Takahashi et al., arXiv:0906:4069
Timestreams to maps

- Form gain-adjusted sum/diff PSB timestreams, polynomial filter + azimuth template subtraction
- Noise in two-year polarization maps: $0.81 \, \mu K$ and $0.64 \, \mu K$ per sq. deg. at 100 and 150 GHz
From maps to power spectra

\[
\hat{C}_\ell = \sum_{\ell'} \kappa_{\ell\ell'} F_{\ell'} B_{\ell'}^2 C_{\ell'} + \hat{N}_\ell
\]

Output of Spice estimator

Spice kernel

Ell space filter function

Beam / pixel factor

The answer: underlying C_ℓ
BICEP detects EE peak at \(\ell \sim 140 \) with high S/N

BB spectrum is consistent with zero, other spectra consistent with LCDM

Polarization data pass jackknife consistency tests
Potential systematics

- Uncertainties in calibration quantities can leak T, E into B
- Define $r = 0.1$ benchmark for systematics: false BB $< 0.007 \mu K^2$ at ell ~ 100
- Use signal simulations to calculate false BB from systematic errors

<table>
<thead>
<tr>
<th>Instrument property</th>
<th>Benchmark ($r = 0.1$)</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative gain uncertainty</td>
<td>0.9%</td>
<td><1.1%</td>
</tr>
<tr>
<td>Differential beam size</td>
<td>3.6%</td>
<td>< 0.3%</td>
</tr>
<tr>
<td>Differential pointing</td>
<td>1.9%</td>
<td>1.3 \pm 0.4%</td>
</tr>
<tr>
<td>Differential ellipticity</td>
<td>1.5%</td>
<td>< 0.2%</td>
</tr>
<tr>
<td>Polarization orientation uncertainty</td>
<td>2.3°</td>
<td>< 0.7°</td>
</tr>
<tr>
<td>Telescope pointing uncertainty</td>
<td>5 arcmin</td>
<td>0.2 arcmin</td>
</tr>
<tr>
<td>Polarized sidelobes (100, 150 GHz)</td>
<td>-9, -4 dBi</td>
<td>-26, -17 dBi</td>
</tr>
<tr>
<td>Focal plane temperature stability</td>
<td>3 nK</td>
<td>1 nK</td>
</tr>
<tr>
<td>Optics temperature stability</td>
<td>4 μK</td>
<td>0.7 μK</td>
</tr>
</tbody>
</table>

More details: Takahashi et al., arXiv:0906:4069
Assume fixed LCDM parameters, calculate template BB, vary r

Calculate chi-squared and likelihood as function of r

BICEP BB: $r = 0.03$, $+0.31$, -0.27, upper limit is $r < 0.73$ at 95% confidence
The state of the field

BICEP contributes highest S/N polarization measurements at $\ell \sim 100$

BB upper limits are the most powerful to date

Upcoming analysis will use full data set, relaxed data cuts... plenty of room for improvement!

BICEP two-year results:
arXiv:0906.1181

BICEP data:
http://bicep.caltech.edu