Status of a Future CMB Polarization Satellite

Shaul Hanany (for the PPPDT and for the Mission Concept Study Team)

NASA's Strategic Plan, circa 2003

Beyond Einstein Program

CMB Mission Concept Studies, 2004

- CMBPol (Gary Hinshaw, Goddard)
- EPIC (Experimental Probe of Inflationary Cosmology, Jamie Bock, JPL)
- EPIC (Einstein Polarization Interferometer for Cosmology, Peter Timbie, Wisconsin)
- ~\$250,000 for two years each

NASA Forms BEPAC, 2006

- BEPAC = Beyond Einstein Program Advisory Committee
- Charter: "Committee is to assess the five Beyond Einstein missions and recommend one mission for first development and launch "

JTION OF THE UNIVERSE TIMELINE

BEPAC Recommendations

The CMB Inflation Probes

- EPIC, Timbie, Bolometric Interferometry (New Astr. Rev. 2006, Vol. 50, Pg. 999)
- CMBPol, Hinshaw, TES bolometer array

EPIC, Bock

EPIC Low Cost (LC) Small Telescope = Large Beam

EPIC Comprehensive Science (CS) Large Telescope = Small Beam

EPIC Low-Cost Mission Architecture

Comprehensive Science Mission Architecture

Main Features								
2.8 meter Telescope + Cold LensesOrbitL2 Ha								
Frequency Bands	30 – 300 GHz	Req'd Lifetime	1 year					
Resolution	4.6' at 100 GHz	Design Lifetime	2 years					
Detectors	1520 TES Bolometers							

Atlas V 551

EPIC Anticipated Performance

From the report

- Risk of null signal
- Technology not ready
- Challenging foreground subtraction

Verbal communications

- Science goal narrow
- Has science case shown to be sufficiently compelling?

Primordial Polarization Program Definition Team - PPPDT

- NASA forms virtual CMBPol 'project office / science team' = PPPDT
- Charter
 - represent CMB community vis-à-vis CMBPol
 - advocate for CMBPol
 - organize community around CMBPol
- Token funding

PPPDT

• 15 Member:

Charles Bennett	Jamie Bock	Julian Borrill
Josh Gundersen	Shaul Hanany	Gary Hinshaw
Alan Kogut	Lawrence Krauss	Adrian Lee
Amber Miller	Harvey Moseley	Lyman Page
Charles Lawrence	Tony Readhead	Peter Timbie

- <u>http://groups.physics.umn.edu/cosmology/PPPDT/index.html</u>
- First Telecon ~ Aug. 2007
- Simultaneous with NASA Solicitation for 'Strategic Mission Concept Studies'

NASA's Strategic Mission Concept Studies

- Solicit ~40 satellite missions for next decade (Nov. 2007)
- Fund ~10 (~Feb. 2008)
- Produce detailed concept + costing (~Jan. 2009)
- Have decadal panel rank concepts in decadal report
- Ranking serves as guide for NASA's priorities

PPPDT Response to NASA's Solicitation

- Concentrate on forthcoming report of decadal panel
- Propose to form a coherent program that will lead to CMBPol late in the decade
- Program will represent entire CMB community
- Work will address major BEPAC points
 - Science
 - Foreground subtraction
 - Technology
 - Control of systematics
- Make program concrete with 'example missions'

Premise: Plan should build upon the conclusions of the Weiss report

Complementary Goals, Separate Functions

PPPDT Sponsored Theory Telecons

- BEPAC fallout: how compelling is a CMBPol satellite?
- Initiate theory telecons: two theorists each
 - What would be the impact of a positive B-mode detection?
 - What would be the impact of no B-mode detection at a level of r=0.01?
 - What are the arguments that r is larger than 0.01?
 - What would be the value of a mission that measured lensing B modes very well, but did not detect primordial B modes?
 - What priority would you give a \$1B investment in a CMB polarization mission compared to other possible astrophysics space missions?
 - If you think it is worthwhile, how would you articulate this to colleagues?
- Start 12/2007, 2 telecons so far: Zaldarriaga, Kinney, Steinhardt, Kamionkowski

A View of CMBPol in 2015 and Beyond

- Technology
 - will not be the limiting factor
 - APEX, SPT, ACT, BICEP, QUIET, EBEX, SPIDER, Clover, ...
 - But funding must increase to bring technologies to maturity
- Instrument sensitivity
 - will not be the limiting factor
 - EPIC already demonstrates necessary sensitivity
- Systematics
 - We are learning how to control (BICEP, QUIET, EBEX, SPIDER, Clover, ...)
 - But yet to be demonstrated
- Foregrounds
 - Subtraction necessary over large areas of the sky
 - Likely necessary even on small patches
 - Yet to be demonstrated

A View of CMBPol in 2015 and Beyond

- Funding
 - Depends on detections/upper limits
 - Depends on the case we make for primary and ancillary science
- Discussion: How do we make CMBPol (and B-mode physics) highly ranked in the decadal panel?
- <u>http://www.physics.umn.edu/PPPDT</u>
- <u>http://cmbpol.uchicago.edu/</u>

Additional Material

Not included in 15 min. Talk

Low-Cost Mission Focal Plane Options

 $\label{eq:linear_state} \begin{array}{l} \underline{\text{Input Assumptions}} \\ \hline \text{Fractional bandwidth } \Delta v / v = 30 \% \\ \hline \text{Focal plane temperature} = 100 \text{ mK} \\ \hline \text{Waveplate temperature} = 20 \text{ K, with } 2 \% \text{ coupling} \\ \hline \text{P}_{\text{sat}}/\text{Q} = 5 \text{ for TES bolometers} \end{array}$

Optical efficiency h = 40 % Optics temperature = 2 K, with 10 % coupling Baffle at 40 K with 0.3 % coupling (measured) $G_0 = 10 \text{ Q} / T_0 \text{ for NTD bolometers}$

NTD Bolometer Option										
Freq	θ _{FWHM}	Nbol ³ [#]	Required Sensitivity ¹				Design Sensitivity ²			
			NET⁴ [μK√s]		δT-θ⁵	δTpix ⁶	NET⁴ [µK√s]		δ Τ-θ ⁵	δ Tpix ⁶
[0112]		[#]	bolo	band	[µK ′]	[nK]	bolo	band	[μΚ ′]	[nK]
30	155	8	98	34.6	106	630	69	24.5	53.1	315
40	116	54	85	11.5	35.4	210	60	8.2	17.7	105
60	77	128	70	6.2	18.9	110	49	4.4	9.5	56
90	52	256	59	3.7	11.3	67	42	2.6	5.6	34
135	34	256	53	3.3	10.2	61	38	2.4	5.1	30
200	23	64	58	7.2	22.1	130	41	5.1	11.0	66
300	16	64	135	16.7	51.4	310	95	11.8	25.7	150
Total ⁷		830		2.1	6.5	39		1.5	3.3	(19)

TES Bolometer Option										
Ene a	0	Nbol ³ [#]	Required Sensitivity ¹				Design Sensitivity ²			
Freq [GHz]	Ө _{FWHM}		NET⁴ [μK√s]		δT-θ⁵	δ Tpix ⁶	NET⁴ [μK√s]		δ Τ-θ ⁵	δTpix ⁶
		[17]	bolo	band	[μΚ ′]	[nK]	bolo	band	[µK ′]	[nK]
30	155	8	87	30.8	66.7	560	62	22	33.4	280
40	116	54	77	10.4	22.7	190	54	7.4	11.3	95
60	77	128	66	5.8	12.7	107	47	4.1	6.3	53
90	52	512	59	2.6	5.6	47	41	1.8	2.8	24
135	34	512	59	2.6	5.7	48	42	1.9	2.8	24
200	23	576	72	3.0	6.5	55	51	2.1	3.2	27
300	16	576	145	6.0	13.0	110	100	4.2	6.5	55
Total ⁷		2366		1.5	3.2	27		1.0	1.6	(13)

¹Sensitivity with $\sqrt{2}$ noise margin in a 1-year mission ²Calculated sensitivity in 2-year design life ³Two bolometers per focal plane pixel ⁴Sensitivity of one bolometer in a focal plane pixel ⁵Sensitivity δ T in a pixel $\theta_{\rm FWHM} \ge \theta_{\rm FWHM}$ times $\theta_{\rm FWHM}$ ⁷Combining all bands together

Ener	θ _{FWHM} [′]	N _{bol} 1 [#]	$\frac{\tau_{req}^{2}}{[ms]}$	τ [ms]	Required Sensitivity ^{3,4}				
Freq					NET⁵ [µK√s]		$w_{p}^{-1/2}$	δTpix ⁷	
[GIIZ]					bolo	band	[μ K -′] ⁶	[nK]	
30	15.5	20	9.7	1.2	85	19	41	240	
45	10.3	80	6.4	0.9	72	10	22	130	
70	6.6	220	4.1	0.7	62	4.2	9	54	
100	(4.6)	320	2.9	0.6	58	3.2	7	41	
150	3.1	380	1.9	0.6	61	3.1	7	40	
220	2.1	280	1.3	0.6	88	5.2	11	67	
340	1.4	120	0.9	0.6	270	25	53	320	
500	0.9	100	0.6	0.3	2100	210	450	2700	
Total ⁸		1520				1.8	3.5	(21)	

Table 6.5.2 Detailed Bands and Sensitivities for TES Option

Notes:

¹Two bolometers per focal plane pixel

 $^{2}\tau_{req} = (1/2\pi) \theta_{FWHM}/d\theta/dt$ at 1 rpm

³Calculated sensitivity with 2-year mission life

⁴Sensitivity margin of √2 applied to all NETs

⁵Sensitivity of one bolometer in a focal plane pixel ⁶ $[8\pi \text{NET}_{\text{bolo}}^2/(T_{\text{mis}} N_{\text{bol}})]^{1/2}(10800/\pi)$ ⁷Sensitivity δT in a 120' x 120' pixel ⁸Combining all bands together

EPIC Interferometer Mission Concept

EPIC Low-Cost Mission Architecture

PPPDT Physics + Astrophysics outreach

- Assemble arguments for CMBPol
 - Outcome of theory telecons
 - Outcome of mission concept study
- Organize seminars + colloquia around the country
- Organize talks in APS, AAS, SPIE conferences